
EE EAlgebraic Cryptanalysis

Gregory V. Bard

Algebraic Cryptanalysis

All rights reserved.

or dissimilar methodology now known or hereafter developed is forbidden.

to proprietary rights.

Library of Congress Control Number: 200992

Springer Dordrecht Heidelberg London New York

© Springer Science+Business Media, LLC 2009

Department of Mathematics

ISBN 978-0-387-88756-2 e-ISBN 978-0-387-88757-9

Printed on acid-free paper

This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject

10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection

DOI 10.1007/978-0-387-88757-9

Springer is part of Springer Science+Business Media (www.springer.com)

with any form of information storage and retrieval, electronic adaptation, computer software, or by similar

Gregory V. Bard

Fordham University
Bronx, NY 10458
USA
gregory.bard@ieee.org

9845

Preface

Algebraic Cryptanalysis is the process of breaking codes by solving polynomial

systems of equations. In some ways this book began when the author began to ex-

plore cryptanalysis as a beginning graduate student, and realized with frustration

that no book whatsoever existed on the topic. Since that time, some books have

been written about Linear Cryptanalysis or Differential Cryptanalysis (e.g. [211]

and [214] cover both), but none on Algebraic Cryptanalysis, which is a rich and

growing field.

The author had some difficulty entering the field of Algebraic Cryptanalysis. Of

course step one is a solid background in Abstract Algebra, and a solid background

in cryptography1. But after these twin foundations, one is not quite ready to read

research papers. This book is intended to be that stepping stone for graduate students

wishing to do their dissertation in Algebraic Cryptanalysis, or any other part of

cryptanalysis. Furthermore, researchers in other areas of Applied Abstract Algebra

or cryptography might benefit from seeing what is going on in cryptanalysis.

The nucleus for the book was my dissertation, under the title “Algorithms for the

Solution of Linear and Polynomial Systems of Equations over Finite Fields, with

Applications to Cryptanalysis”, submitted for the degree Doctor of Philosophy of

Applied Mathematics and Scientific Computation, defended in the Summer of 2007,

under the guidance of Professor Lawrence C. Washington. The author is extremely

grateful for Prof. Washington’s time, help and assistance at all stages.

In addition to being a text for graduate students, the author hopes the book will

be also useful for those currently working in the field as well. The pressures of page

counts often require that the internals or variants of algorithms cannot be published

in exhaustive detail in the standard scientific literature. Here, we have explained

and expanded upon several algorithms previously published by myself and by oth-

ers. Often the details left out of a published paper are those required to make an

algorithm work efficiently.

1 If these subjects are not yet ones that the reader is comfortable with, the author recommends

[216] for cryptography, and [119] for undergraduate Abstract Algebra.

v

vi

The backbone of the theory of polynomial systems of equations, over any field,

is algebraic geometry. This topic is exquisitely covered in Ideals, Varieties, and

Algorithms by Cox, Little and O’Shea [86], also published by Springer-Verlag. The

author therefore strongly encourages the reader to read [86] along with this text,

but note that [86] is not, by any means, a prerequisite for this book. The topic of

Gröbner Bases, in particular, is deferred to [86], because they do an exquisite job

there.

Last but not least, a handy desk-reference for finite fields is the encyclopedia

[165] by Lidl and Niederreiter. The previous edition of it, [164], was referred to as

“the Bible” at several finite field conferences.

Why this Book was Written

Tradition in Applied Mathematics, particularly in the USA, dictates that the re-

search of a doctoral dissertation be divided into journal articles, and published in the

years immediately following the defense. However, there is an interesting category

of work that is left in limbo. Original research can, of course, be published by normal

means. But work that is “dug out of the dust”, published but mostly forgotten, cannot

be published again. For example, the proofs of the equi-complexity of matrix opera-

tions, have been known for a long time, but not published together in one place; the

“degree dropper algorithm” (See Section 11.4 on Page 192) must have been known

for decades, but the author could not find a proof of it anywhere; the Method of

Four Russians for Multiplication was known anecdotally, but the original paper was

in Russian [21] and the most recent textbook version found was from 1974 [13, Ch.

6]; much work has been published on SAT-solvers, and how they work, but there

is no consolidated elementary introduction for those ignorant of the subject, as the

author found himself at the start of this work; many of the algorithms of Nicolas

Courtois, including ElimLin, are never fully and explicitly defined anywhere. The

author only wishes to see these techniques and algorithms used. While the author is

no master of exposition (as the reader is about to discover), he hopes that the space

which a book affords has allowed him to render this topic more comprehensible,

particularly to a graduate student audience, or even motivated undergraduates.

The author believes SAT-solvers, in particular, are a very underestimated tool.

Other communities rely upon them as a computational engine of great power. It

is hoped that the chapter on how SAT-solvers work will encourage scholars not to

consider them as black-boxes. Furthermore, the author hopes that the two chapters

on how to adapt polynomial systems of equations to be solved by SAT-solvers will

stimulate research into new and unrelated applications for these techniques, such

as solving combinatorial problems outside of cryptography such as graph-coloring.

Toward this end we include an appendix introducing this connection.

Preface

vii

Advice for Graduate Students

This book is primarily intended for those who are to embark on study in the field

of algebraic cryptanalysis, particularly graduate students about to begin a disserta-

tion or a masters thesis in that topic. The author therefore will present the following

piece of advice: Read as many papers as possible.

Be sure to include some that are old, as old papers often have excellent ideas.

Some of these are not electronically available. Reading a very long paper, in detail,

verifying all the small steps with your pencil, is slow but important. There may be

some papers which you cannot give this magnitude of time to. If so, it is better to

read the first 4 pages of 10 papers than to only read the abstracts of 20 or 30.

With hope for the future,

Gregory V. Bard,

Visiting Assistant Professor,

Department of Mathematics,

Fordham University,

Bronx, New York, USA.

May 4th, 2009

Preface

Dedication

With pleasure, I dedicate this dissertation to my family. To my father, who taught

me much in mathematics, most especially calculus, years earlier than I would have

been permitted to see it. And to my mother and brother, who have encouraged me

in every endeavor.

ix

Acknowledgements

I am deeply indebted to my advisor, Professor Lawrence C. Washington, who has

read and re-read many versions of this document, and almost every research paper

I have written to date, provided me with countless hours of his time, and given me

sound advice, on matters technical, professional and personal. He has had many

students, and all I have spoken to are in agreement that he is a phenomenal advisor,

and it is humbling to know that we can never possibly equal him. He is that rare type

of scholar, who is both outstanding in teaching and in research.

I have been very fortunate to work with Dr. Nicolas T. Courtois, currently Senior

Lecturer at the University College of London. It suffices to say that the field of alge-

braic cryptanalysis has been revolutionized by his work. He permitted me to study

with him for four months in Paris, and later even to stay at his home in England,

after his move there. Much of my work is joint work with him, including everything

I have done with Keeloq and ElimLin, as well as my first paper on SAT-solvers. He

has always given very freely of his ideas.

The SAGE community has been a true inspiration for me. The fact that so many

highly-talented volunteers surrender so much of their free time to work unpaid on

a non-for-profit project is heart warming. Knowing that my work is part of SAGE

makes me know that my effort was not wasted. This is primarily due to William

Stein, who created SAGE and guides the project. Furthermore, he has given me

access to certain high-performance computing systems, without which my research

would have been essentially impossible. I publicly thank him in particular, and all

SAGE volunteers in general.

I would like to particularly thank Michael Abshoff (University of Washington,

Seattle) for help with SAGE, and forgiving two unfortunate computational episodes;

William Adams (University of Maryland at College Park, Ret.) for introducing me

to Gröbner Bases, and for an excellent class in abstract algebra; Martin Albrecht

(Royal Holloway College, University of London) for endless support in SAGE as

well as finite field linear algebra; Bill Arbaugh (University of Maryland at Col-

lege Park) for an excellent computer security class; Kostas Arkoudas (Rensselaer

Polytechnic Institute) for suggesting I consider SAT-solvers; Shaun Ault (Fordham

University) for helping me with analytic combinatorics; Joe Barth (now US Census

xi

xii

Bureau) for help in graduate school, especially with the Algebra Qualifier; Lynn

Batten (Deakin University, Australia) for challenging me to prove Theorem 74 on

Page 196 during a coffee break on July 10, 2007, at the conference Fq8 , in Mel-

bourne; Paul Bello (now Department of Defense) for inspiration, good conversations

and career advice; Daniel Bernstein (Univerisity of Illinois at Chicago) for profuse

and frequent technical as well as career advice, and numerous useful ideas; Mark

Binfield (now Booz-Allen Hamilton) for many long conversations about math and

economics; Michael Black (American University) for help with distributed systems,

BOINC, SAT-solvers, and teaching advice; Melkana Brakalova (Fordham Univer-

sity) for teaching advice; Selmar Bringsjord (Rensselaer Polytechnic Institute) for

teaching two classes in logic, that would turn out to be the foundation of my en-

tire outlook on research and on life; Armand Brumer (Fordham University, Ret.)

for technical advice, encouragement, and for reminding me how important com-

puter algebra can be to working pure mathematicians; Ed Casimiro (University of

Pheonix) for help with Chapter 6; Carlos Cid (Royal Holloway College, University

of London) for career advice, and his excellent book on the AES which inspired

this text; Abram Claycomb (now United States Air Force) for much help at RPI and

later encouragement as well; Blandine Debraize (Gemalto) for her work in break-

ing SNOW with SAT-solvers; Theodore Faticoni (Fordham University) for helping

me decide to publish this book in the first place; William Randolph Franklin (Rens-

selaer Polytechnic Institute) for being my undergraduate advisor and supervising

my first cryptographic research project—on passwords; William Gasarch (Univer-

sity of Maryland at College Park) for algorithms advice and background on Gray

Codes; Theresa Girardi (Fordham University) for much proofreading and guidance

in number theory as well as teaching; Alex Golec (Fordham University) for help

with programming and compilers; Janusz Golec (Fordham University) for technical

advice relating to probability, and guidance in teaching; Virgil D. Gligor (Univer-

sity of Maryland at College Park) for encouraging my switch from engineering to

mathematics; Michael Gray (American University) for hiring me, and guidance in

matters of teaching; Carmi Gressel (Fortress) for introducing me to the world of

patents, and ZK-Crypt; William Hart (University of Warwick) for help with lin-

ear algebra and advice related to publishing papers; Michael Headley (American

University) for proofreading; Tanja Lange (Technische Universiteit Eindhoven) for

practical and professional advice; Bill and Maryam Hastings (Fordham University)

for career advice and encouragement; Sebastiaan Indesteege (Katholieke Univer-

siteit Leuven in Belgium) for comments on Keeloq; Peter Jeavons (St Anne’s Col-

lege, Oxford University) for help with SAT problems and polynomials; Chris Jef-

ferson (Oxford University Computing Laboratory) for much help with SAT-solvers;

Antoine Joux (Université de Versailles) for help with Gray Codes and Butterfly

Transposes; W. David Joyner (United States Naval Academy) for help with SAGE

and career advice; Haig Kafafian† for introducing me to cryptography and to ma-

trices; Igor Khalatian (now LiveLOOK, Inc.) for teaching me how to program in

C, so many years ago; Jon Katz (University of Maryland at College Park) for two

excellent cryptography classes, and guidance in my first cryptographic paper; Kyle

Kloster (Fordham University) for proofreading and help with the quadratic sieve;

Acknowledgements

xiii

Susan Lagerstrom-Fife (Springer-Verlag) for patience and guidance in the last stages

of the development of this manuscript; Godfrey H. L. Le May (Worcester College,

Oxford University, Ret.) for encouragement; David Levermore (University of Mary-

land at College Park) for career guidance, linear algebra advice, and for admitting

me to the PhD program in the first place; Michael Levin (American University)

for proofreading and help with Darwinian Gradient Descent; Robert Lewis (Ford-

ham University) for guidance in matters ranging from resultants to teaching, from

the role of polynomial systems in chemistry to the role of the college instructor in

setting standards; Robert Miller (University of Washington, Seattle) for help with

graph theory and linear algebra; Ilya Mironov (Microsoft Research) for discussions

about SAT-solvers; Leonard Nissim (Fordham University) for advice in teaching

abstract algebra, and on the job hunt; Andrew Novocin (University of Montpel-

lier) for many interesting discussions; Brennan O’Donnell (Fordham University)

for vital funding; Sean O’Neil (The VEST Corporation) for help with generating

algebraic normal forms, and advice on other topics; Jacques Patarin (Université de

Versailles) for encouragement in my studies of both SAT-solvers and the French

language; Kenneth Patterson (Royal Holloway College, University of London) for

career advice and whose questions at the 2008 Workshop on Mathematical Cryp-

tography in Santander, Spain, that encouraged me to rigorously describe the attack

in Section 4.6 on Page 49; Clément Pernet (Université Joseph Fourier, Grenoble)

for much useful advice on linear algebra over finite fields, and thinking up the pro-

nunciation “Mary” for M4RI, a mercy to all francophones who will ever mention

the library; Carl Pomerance (now Dartmouth University) for encouragement and

help with sparse linear algebra; Cris Poor (Fordham University) for many conversa-

tions related to NP-Completeness and to teaching; Bill Singer (Fordham University)

for advice in matters ranging from teaching to negotiation of the book publishing

contract; Simon Schur (now University of Toronto) for letting me use his office;

Richard Schwartz (now Brown University) for teaching me abstract algebra, way

back when; Yana Shabaev (American University) for tender advice; Harold Snider

(National Federation of the Blind, Ret.) for much encouragement, especially re-

lated to Oxford; Mate Soos (INRIA Rhone-Alpes) for information about MINISAT

internals, and for proofreading Chapter 14; Albert Studdard (University of North

Carolina at Pembroke, Ret.) for career advice, and guidance in matters of teaching;

Buck Surdu (US Army) for many interesting conversations; Mark Tilmes (Univer-

sity of Maryland at College Park) for assistance, enthusiasm for parallel comput-

ing, and forgiving an unfortunate computational episode; Steven Tretter (University

of Maryland at College Park) for introducing me to finite fields and their applica-

tions; Mak Trifkovic (now University of Victoria) for teaching and career advice;

Seena Vali (Fordham University) for proofreading and help with sparse matrices;

Christopher Wolf (now University of Bochum) for much advice; Kris Wolff (Ford-

ham University) for help in writing grants; Koon Ho “Kenneth” Wong (University

of Queensland Univeristy of Technology) for help with graph theory and partition-

ing polynomial systems; Angela Wu (American University) for guidance in matters

of teaching; and Patrick Studdard, for everything.

Acknowledgements

xiv

The National Security Agency was my first full-time permanent job and I remain

very grateful to them not only for the opportunity to serve my country but also for

the training and exposure to new ideas that I had there. It was a happy four years for

me, and I particularly fondly remember the awe-inspiring dedication its employees

had for pushing ahead with agency’s mission, even before September 11, 2001. It

is a true “puzzle palace” where math nerds can congregate with their own kind and

work on deep problems. Both tradition and law forbid me from naming specific

individuals who have helped me or guided me, but there were several.

Several texts by Steven D. Krantz were consulted during this project. Princi-

pally they are A Primer on Mathematical Writing [150], Mathematical Publishing:

A Guidebook [153], but also A Mathematician’s Survival Guide [152]. Without his

guidance my writing would be even worse than the reader is about to discover it to

be. I strongly suggest any graduate student or recent PhD read those books, and also

How to Teach Mathematics [151]. Note, the vast majority of the contents of these

books apply well to Computer Science as well.

Several governmental agencies have contributed financial to my eduction or to

my research. They are the National Science Foundation (Division of Mathematical

Sciences2), the United States Navy (Naval Sea Systems Command), the National

Security Agency, and ECRYPT, the European Union’s Cryptographic research or-

ganization. They have my unending gratitude. I am also happy to thank Fordham

University for two faculty research grants and an interdisciplinary seminar grant.

2 The SAGE grants DMS-0555776 and DMS-0821725, and the University of Maryland at College

Park VIGRE grant.

Acknowledgements

xv

If you Find Any Errors. . .

Wherfore I trust thei that be learned, and happen to reade this worke, wil beare the moare

with me, if thei finde any thyng, that thei doe mislike: Wherein if thei will use this curtesie,

either by writynge to admonishe me thereof, either theim selfes to sette forthe a moare

perfecter woorke, I will thynke them praise worthie.

Robert Recorde, 1557, quoted from [121, last page]. See also Appendix E on

Page 337.

Acknowledgements

Contents

List of Tables

List of Figures

List of Algorithms .

List of Abbreviations . xxxi i i

1 Introduction: How to Use this Book . 1

Part I Cryptanalysis

2 The Block Cipher Keeloq and Algebraic Attacks 9

2.1 What is Algebraic Cryptanalysis? . 10

2.1.1 The CSP Model . 10

2.2 The Keeloq Specification . 10

2.3 Modeling the Non-linear Function . 11

2.3.1 I/O Relations and the NLF . 12

2.4 Describing the Shift-Registers . 12

2.4.1 Disposing of the Secret Key Shift-Register 13

2.4.2 Disposing of the Plaintext Shift-Register 13

2.5 The Polynomial System of Equations . 13

2.6 Variable and Equation Count . 14

2.7 Dropping the Degree to Quadratic . 14

2.8 Fixing or Guessing Bits in Advance . 15

2.9 The Failure of a Frontal Assault . 16

3 The Fixed-Point Attack . 17

3.1 Overview . 17

3.1.1 Notational Conventions . 17

3.1.2 The Two-Function Representation . 17

3.1.3 Acquiring an f
(8)
k -oracle . 18

xvii

. .

. xxvii

xxix

xxxi

xviii Contents

3.2 The Consequences of Fixed Points . 18

3.3 How to Find Fixed Points . 19

3.4 How far must we search? . 20

3.4.1 With Analytic Combinatorics . 21

3.4.2 Without Analytic Combinatorics . 23

3.5 Comparison to Brute Force . 23

3.6 Summary . 24

3.7 Other Notes . 25

3.7.1 A Note about Keeloq’s Utilization . 25

3.7.2 RPA vs KPA vs CPA . 26

3.8 Wagner’s Attack . 26

3.8.1 Later Work on Keeloq . 27

4 Iterated Permutations . 29

4.1 Applications to Cryptography . 29

4.2 Background . 30

4.2.1 Combinatorial Classes . 30

4.2.2 Ordinary and Exponential Generating Functions 30

4.2.3 Operations on OGFs . 31

4.2.4 Examples . 34

4.2.5 Operations on EGFs . 36

4.2.6 Notation and Definitions . 39

4.3 Strong and Weak Cycle Structure Theorems . 40

4.3.1 Expected Values . 41

4.4 Corollaries . 43

4.4.1 On Cycles in Iterated Permutations . 45

4.4.2 Limited Cycle Counts . 46

4.4.3 Monomial Counting . 47

4.5 Of Pure Mathematical Interest . 47

4.5.1 The Sigma Divisor Function . 48

4.5.2 The Zeta Function and Apéry’s Constant 48

4.5.3 Greatest Common Divisors and Cycle Length 49

4.6 Highly Iterated Ciphers . 49

4.6.1 Distinguishing Iterated Ciphers . 50

4.6.2 A Key Recovery Attack . 52

5 Stream Ciphers . 55

5.1 The Stream Ciphers Bivium and Trivium . 55

5.1.1 Background . 55

5.1.2 Bivium as Equations . 61

5.1.3 An Excellent Trick . 64

5.1.4 Bivium-A. 65

5.1.5 A Notational Issue . 65

5.1.6 For Further Reading . 65

5.2 The Stream Cipher QUAD . 66

Contents xix

5.2.1 How QUAD Works . 66

5.2.2 Proof of Security . 67

5.2.3 The Yang-Chen-Bernstein-Chen Attack against QUAD 72

5.2.4 Extending to GF(16) . 75

5.2.5 For Further Reading . 77

5.3 Conclusions for QUAD . 78

Part II Linear Systems Mod 2

6 Some Basic Facts about Linear Algebra over GF(2) 81

6.1 Sources . 81

6.2 Boolean Matrices vs GF(2) Matrices . 81

6.2.1 Implementing with the Integers . 82

6.3 Why is GF(2) Different? . 82

6.3.1 There are Self-Orthogonal Vectors . 82

6.3.2 Something that Fails . 83

6.3.3 The Probability a Random Square Matrix Singular or

Invertible . 84

6.4 Null Space from the RREF . 85

6.5 The Number of Solutions to a Linear System 86

7 The Complexity of GF(2)-Matrix Operations . 89

7.1 The Cost Model . 89

7.1.1 A Word on Architecture and Cross-Over 90

7.1.2 Is the Model Trivial? . 91

7.1.3 Counting Field Operations . 91

7.1.4 Success and Failure . 92

7.2 Notational Conventions . 92

7.3 To Invert or to Solve? . 93

7.4 Data Structure Choices . 94

7.4.1 Dense Form: An Array with Swaps . 94

7.4.2 Permutation Matrices . 94

7.5 Analysis of Classical Techniques with our Model 96

7.5.1 Naı̈ve Matrix Multiplication . 96

7.5.2 Matrix Addition . 96

7.5.3 Dense Gaussian Elimination . 96

7.5.4 Back-Solving a Triangulated Linear System 98

7.6 Strassen’s Algorithms . 99

7.6.1 Strassen’s Algorithm for Matrix Multiplication 100

7.6.2 Misunderstanding Strassen’s Matrix Inversion Formula 101

7.7 The Unsuitability of Strassen’s Algorithm for Inversion 101

7.7.1 Strassen’s Approach to Matrix Inversion 102

7.7.2 Bunch and Hopcroft’s Solution . 103

7.7.3 Ibara, Moran, and Hui’s Solution . 103

xx Contents

8 On the Exponent of Certain Matrix Operations . 107

8.1 Very Low Exponents . 107

8.2 The Equicomplexity Theorems . 108

8.2.1 Starting Point . 109

8.2.2 Proofs . 109

8.3 Determinants and Matrix Inverses . 118

8.3.1 Background . 118

8.3.2 The Baur-Strassen-Morgenstern Theorem 120

8.3.3 Consequences for the Determinant and Inverse 132

9 The Method of Four Russians . 133

9.0.4 The Fair Coin Assumption . 134

9.1 Origins and Previous Work . 134

9.1.1 Strassen’s Algorithm . 135

9.2 Rapid Subspace Enumeration . 135

9.3 The Four Russians Matrix Multiplication Algorithm 137

9.3.1 Role of the Gray Code . 137

9.3.2 Transposing the Matrix Product . 138

9.3.3 Improvements . 138

9.3.4 A Quick Computation . 139

9.3.5 M4RM Experiments Performed by SAGE Staff 139

9.3.6 Multiple Gray-Code Tables and Cache Management 141

9.4 The Four Russians Matrix Inversion Algorithm 141

9.4.1 Stage 1: . 141

9.4.2 Stage 2: . 142

9.4.3 Stage 3: . 142

9.4.4 A Curious Note on Stage 1 of M4RI . 143

9.4.5 Triangulation or Inversion? . 145

9.5 Exact Analysis of Complexity . 145

9.5.1 An Alternative Computation . 146

9.5.2 Full Elimination, not Triangular . 147

9.5.3 The Rank of 3k Rows, or Why k + ε is not Enough 148

9.5.4 Using Bulk Logical Operations . 149

9.6 Experimental and Numerical Results . 149

9.7 M4RI Experiments Performed by SAGE Staff 151

9.7.1 Determination of k . 151

9.7.2 The Transpose Experiment . 151

9.8 Pairing With Strassen’s Algorithm for Matrix Multiplication 151

9.8.1 Pairing M4RI with Strassen . 152

9.9 Higher Values of q . 152

9.9.1 Building the Gray Code over GF(q) . 152

9.9.2 Other Modifications . 153

9.9.3 Running Time . 153

9.9.4 Implementation . 154

Contents xxi

10 The Quadratic Sieve . 159

10.1 Motivation . 159

10.1.1 A View of RSA from 60,000 feet . 160

10.1.2 Two Facts from Number Theory . 161

10.1.3 Reconstructing the Private Key from the Public Key 161

10.2 Trial Division . 163

10.2.1 Other Ideas . 165

10.2.2 Sieve of Eratosthenes . 167

10.3 Theoretical Foundations . 169

10.4 The Naı̈ve Sieve . 170

10.4.1 An Extended Example . 171

10.5 The Gödel Vectors . 171

10.5.1 Benefits of the Notation . 172

10.5.2 Unlimited-Dimension Vectors . 173

10.5.3 The Master Stratagem . 173

10.5.4 Historical Interlude . 173

10.5.5 Review of Null Spaces . 174

10.5.6 Constructing a Vector in the Even-Space 175

10.6 The Linear Sieve Algorithm . 176

10.6.1 Matrix Dimensions in the Linear & Quadratic Sieve 176

10.6.2 The Running Time . 178

10.7 The Example, Revisited . 178

10.8 Rapidly Generating Smooth Squares . 180

10.8.1 New Strategy . 181

10.9 Further Reading . 183

10.10Historical Notes . 183

Part III Polynomial Systems and Satisfiability

11 Strategies for Polynomial Systems . 187

11.1 Why Solve Polynomial Systems of Equations over Finite Fields? . . . 187

11.2 Universal Maps . 189

11.3 Polynomials over GF(2) . 191

11.3.1 Exponents: x2 = x . 191

11.3.2 Equivalent versus Identical Polynomials 191

11.3.3 Coefficients . 192

11.3.4 Linear Combinations . 192

11.4 Degree Reduction Techniques . 192

11.4.1 An Easy but Hard-to-State Condition . 193

11.4.2 An Algorithm that meets this Condition 194

11.4.3 Interpretation . 195

11.4.4 Summary . 196

11.4.5 Detour: Asymptotics of the “Choose” Function 196

11.4.6 Complexity Calculation . 197

11.4.7 Efficiency Note . 198

xxii Contents

11.4.8 The Greedy Degree-Dropper Algorithm 198

11.4.9 Counter-Example for Linear Systems 199

11.5 NP-Completeness of MP . 199

11.6 Measures of Difficulty in MQ . 203

11.6.1 The Role of Over-Definition . 203

11.6.2 Ultra-Sparse Quadratic Systems . 203

11.6.3 Other Views of Sparsity . 205

11.6.4 Structure . 205

11.7 The Role of Guessing a Few Variables . 206

11.7.1 Measuring Infeasible Running Times . 206

11.7.2 Fix-XL . 207

12 Algorithms for Solving Polynomial Systems . 209

12.1 A Philosophical Point on Complexity Theory 209

12.2 Gröbner Bases Algorithms . 210

12.2.1 Double-Exponential Running Time . 210

12.2.2 Remarks about Gröbner Bases . 210

12.3 Linearization . 211

12.4 The XL Algorithm. 213

12.4.1 Complexity Analysis . 215

12.4.2 Sufficiently Many Equations . 216

12.4.3 Jumping Two Degrees . 216

12.4.4 Fix-XL . 217

12.5 ElimLin . 219

12.5.1 Why is this useful? . 220

12.5.2 How to use ElimLin . 221

12.5.3 On the Sub-Space of Linear Equations in the Span of a

Quadratic System of Equations . 223

12.5.4 The Weight of the Basis . 224

12.5.5 One Last Trick for GF(2)-only . 225

12.5.6 Notes on the Sufficient Rank Condition 226

12.6 Comparisons between XL and F4 . 227

12.7 SAT-Solvers . 228

12.8 System Fragmentation . 228

12.8.1 Separability . 229

12.8.2 Gaussian Elimination is Not Enough . 230

12.8.3 Depth First Search . 230

12.8.4 Nearly Separable Systems . 231

12.8.5 Removing Multiple vertices . 232

12.8.6 Relation to Menger’s Theorem . 232

12.8.7 Balance in Vertex Cuts . 233

12.8.8 Applicability . 233

12.9 Resultants . 234

12.9.1 The Univariate Case . 234

12.9.2 The Bivariate Case . 235

Contents xxiii

12.9.3 Multivariate Case . 236

12.9.4 Further Reading . 238

12.10The Raddum-Semaev Method . 238

12.10.1Building the Graph . 238

12.10.2Agreeing . 239

12.10.3Propigation . 240

12.10.4Termination . 240

12.10.5Gluing . 240

12.10.6Splitting . 242

12.10.7Summary . 242

12.11The Zhuang-Zi Algorithm . 243

12.12Homotopy Approach . 243

13 Converting MQ to CNF-SAT . 245

13.1 Summary . 245

13.2 Introduction . 246

13.2.1 Application to Cryptanalysis . 247

13.3 Notation and Definitions . 247

13.4 Converting MQ to SAT . 248

13.4.1 The Conversion . 248

13.4.2 Measures of Difficulty . 250

13.4.3 Preprocessing . 252

13.4.4 Fixing Variables in Advance . 253

13.4.5 SAT-Solver Used . 254

13.5 Experimental Results . 255

13.5.1 The Source of the Equations . 255

13.5.2 Note About the Variance . 255

13.5.3 The Log-Normal Distribution of Running Times 256

13.5.4 The Optimal Cutting Number . 257

13.6 Cubic Systems . 258

13.6.1 Do All Possible Monomials Appear? . 258

13.6.2 Measures of Efficiency . 260

13.7 Further Reading . 260

13.7.1 Previous Work . 260

13.7.2 Further Work . 261

13.8 Conclusions . 262

14 How do SAT-Solvers Operate? . 263

14.1 The Problem Itself . 263

14.1.1 Conjunctive Normal Form . 264

14.2 Solvers like Walk-SAT . 264

14.2.1 The Search Space . 265

14.2.2 Papadimitriou’s Algorithm . 265

14.2.3 Greedy SAT or G-SAT . 266

14.2.4 Walk-SAT . 267

xxiv Contents

14.2.5 Walk-SAT versus Papadimitriou . 268

14.2.6 Where Heuristic Methods Fail . 268

14.2.7 Closing Thoughts on Heuristic Methods 269

14.3 Back-Tracking . 269

14.4 Chaff and its Descendants . 272

14.4.1 Variable Management . 272

14.4.2 Unit Propagation . 273

14.4.3 The Method of Watched Literals . 273

14.4.4 Absent Literals . 274

14.4.5 Summary . 274

14.5 Enhancements to Chaff . 275

14.5.1 Learned Clauses . 275

14.5.2 The Alarm Clock . 275

14.5.3 The Third Finger . 276

14.6 Economic Motivations . 276

14.7 Further Reading . 277

15 Applying SAT-Solvers to Extension Fields of Low Degree 279

15.1 Introduction . 279

15.2 Solving GF(2) Systems via SAT-Solvers . 280

15.2.1 Sparsity . 280

15.3 Overview . 281

15.4 Polynomial Systems over Extension Fields of GF(2) 281

15.4.1 Extensions of the Coefficient Field . 282

15.4.2 Difficulty in Bits . 282

15.5 Finding Efficient Arithmetic Representations via Matrices 282

15.6 Using the Algebraic Normal Forms . 286

15.6.1 Remarks on the Special Forms . 287

15.6.2 Remarks on Degree . 287

15.6.3 Remarks on Coefficients . 288

15.6.4 Solving with Gröbner Bases . 288

15.7 Experimental Results . 289

15.7.1 Computers Used . 291

15.7.2 Polynomial Systems Used . 291

15.8 Inverses and Determinants . 292

15.8.1 Determinants . 292

15.8.2 Inverses . 292

15.8.3 Rijndael and the Para-Inverse Operation 293

15.9 Conclusions . 294

15.10Review of Extension Fields . 295

15.10.1Constructing the Field . 295

15.10.2Regular Representation . 297

15.11Reversing the Isomorphism: The Existence of Dead Give-Aways . . . 298

Contents xxv

A On the Philosophy of Block Ciphers With Small Blocks 301

A.1 Definitions . 301

A.2 Brute-Force Generic Attacks on Ciphers with Small Blocks 302

A.3 Key Recovery vs. Applications of Ciphers with Small Blocks 303

A.4 The Keeloq Code-book—Practical Considerations 306

A.5 Conclusions . 307

B Formulas for the Field Multiplication law for Low-Degree

Extensions of GF(2) . 309

B.1 For GF(4) . 309

B.2 For GF(8) . 309

B.3 For GF(16) . 310

B.4 For GF(32) . 311

B.5 For GF(64) . 312

C Polynomials and Graph Coloring, with Other Applications 315

C.1 A Very Useful Lemma . 315

C.2 Graph Coloring . 316

C.2.1 The c 6= pn Case . 316

C.2.2 Application to GF(2) Polynomials . 316

C.3 Related Applications . 317

C.3.1 Radio Channel Assignments . 317

C.3.2 Register Allocation . 318

C.4 Interval Graphs . 318

C.4.1 Scheduling an Interval Graph Scheduling Problem 319

C.4.2 Comparison to Other Problems . 320

C.4.3 Moral of the Story . 321

D Options for Very Sparse Matrices . 323

D.1 Preliminary Points . 323

D.1.1 Accidental Cancellations . 323

D.1.2 Solving Equations by Finding a Null Space 324

D.1.3 Data Structures and Storage . 324

D.2 Naı̈ve Sparse Gaussian Elimination . 325

D.2.1 Sparse Matrices can have Dense Inverses 326

D.3 Markowitz’s Algorithm. 326

D.4 The Block Wiedemann Algorithm . 326

D.5 The Block Lanczos Algorithm . 327

D.6 The Pomerance-Smith Algorithm . 327

D.6.1 Overview . 328

D.6.2 Inactive and Active Columns . 329

D.6.3 The Operations . 329

D.6.4 The Actual Algorithm . 331

D.6.5 Fill-in and Memory Management . 332

D.6.6 Technicalities . 333

xxvi Contents

D.6.7 Cremona’s Implementation . 334

D.6.8 Further Reading . 335

E Inspirational Thoughts, Poetry and Philosophy . 337

References . 339

Index . 351

List of Tables

3.1 Success Probabilities of Bard’s Dissertation Attack . 22

3.2 Fixed points of random permutations and their 8th powers . 24

5.1 The number of monomials for two cases of polynomial systems over particular

finite fields. 73

7.1 Algorithms and Performance, for m×n matrices . 105

9.1 M4RM Running Times versus MAGMA . 140

9.2 Confirmation that k = 0.75log2 n is not a good idea. 140

9.3 Probabilities of a Fair-Coin Generated n×n matrix over GF(2), having given

Nullity . 145

9.4 Experiment 1— Optimal Choices of k, and running time in seconds. 155

9.5 Running times, in msec, Optimization Level 0 . 155

9.6 Percentage Error for Offset of K, From Experiment 1 . 155

9.7 Results of Experiment 3—Running Times, Fixed k=8 . 156

9.8 Experiment 2—Running time under different Compiler Optimization Settings, k=8 156

9.9 Trials between M4RI and Gaussian Elimination (msec) . 157

9.10 The Ineffectiveness of the Transpose Trick . 157

9.11 Optimization Level 3, Flexible k . 158

12.1 The typical parameters used in solving a 50-variable, 50-equation quadratic

system of equations, with XL. 218

13.1 CNF Expression Difficulty Measures for Quadratic Systems, by Cutting Number . . 251

13.2 Running Time Statistics in Seconds . 259

13.3 CNF Expression Difficulty Measures for Cubic Systems, by Cutting Number 260

A.1 Block Ciphers, with their Block-Lengths and Key-Lengths . 302

xxvii

List of Figures

2.1 The Keeloq Circuit Diagram . 11

5.1 The Stream Cipher Trivium . 57

5.2 The Stream Cipher Trivium . 59

5.3 The Stream Cipher Bivium-A . 62

5.4 The Stream Cipher Bivium, sometimes called Bivium-B . 62

12.1 Venn Diagram . 241

13.1 The Distribution of Running Times, Experiment 1 . 256

13.2 The Distribution of the Logarithm of Running Times, Experiment 1 257

15.1 The Inverse of the Matrix M = a0I +a1A+a2A2 +a3A3 . 293

xxix

List of Algorithms

1 The Fixed Point Attack on Keeloq [G. Bard] . 20

2 The Stream Cipher Trivium [De Cannière and Preneel] . 58

3 The Stream Cipher Bivium [Hårvard Raddum] . 63

4 Gram-Schmidt, over a field of characteristic zero. [Jørgen Pedersen Gram and

Erhard Schmidt] . 83

5 Finding the Null Space from an RREF [Classic] . 87

6 To compose two permutations or row-swap arrays. [Classic] . 95

7 To invert a permutation matrix or row-swap array. [Classic] . 95

8 Naı̈ve Matrix Multiplication [Classic] . 96

9 Dense Gaussian Elimination, for Inversion [Carl Friedrich Gauss and Wilhelm

Jordan] . 97

10 Dense Gaussian Elimination, for Triangularization [Carl Friedrich Gauss] 98

11 Back-Solving a Triangulated System [Classic] . 99

12 Strassen’s Algorithm for Matrix Multiplication [Volker Strassen] 100

13 Method of Four Russians, for Matrix Multiplication [after Arlazarov, Dinic,

Kronrod, and Faradzev] . 137

14 Method of Four Russians, for Inversion [Unknown] . 142

15 Reconstruction of an RSA Private Key from the Public Key [Rivest, Shamir,

Aldeman] . 163

16 Process(x,p): Removing all factors of p from x. [Classic] . 165

17 To generate a list of all primes in [2,n]. [Eratosthenes of Cyrene] 167

18 To generate a list of all pB-smooth numbers in [2,n]. [Variant of Eratosthenes,

from [192]] . 168

19 A Naı̈ve Version of the Quadratic Sieve [Unknown] . 171

20 The Linear Sieve [Richard Schroeppel] . 177

21 The Quadratic Sieve [Carl Pomerance] . 182

22 The XL Algorithm [Nicolas Courtois] . 214

23 The ElimLin Algorithm [Nicolas Courtois] . 222

24 An Expensive but Effective Way to find a low Weight Basis [G. Bard] 225

25 Simple Vertex Removal Algorithm [Classic] . 231

26 Searching for an r-tuple of variables to guess. [G. Bard] . 234

27 The SAT-Solver GSAT or “Greedy SAT” [Selman, Levesque, and Mitchel] 266

28 The SAT-Solver “Walk-SAT” [Selman, Kautz, and Cohen] . 270

29 Coloring an Interval Graph [Fulkerson and Gross] . 320

xxxi

List of Abrreviations

f (x) = o(g(x)) limx→∞
f (x)
g(x) = 0

f (x) = O(g(x)) ∃c,n0 ∀n > n0 f (x)≤ cg(x)
f (x) = Ω(g(x)) ∃c,n0 ∀n > n0 f (x)≥ cg(x)

f (x) = ω(g(x)) limx→∞
g(x)
f (x) = 0

f (x) = Θ(g(x)) f (x) = O(g(x)) while simultaneously f (x) = Ω(g(x))

f (x)∼ g(x) limx→∞
f (x)
g(x) = 1

AES Advanced Encryption Standard

ANF Algebraic Normal Form

CPA Chosen Plaintext Attack

CNF Conjunctive Normal Form

CNF-SAT the Conjunctive Normal Form Satisfiability Problem

DES The Data Encryption Standard

DNF Disjunctive Normal Form

GCD Greatest Common Divisor

GF(q) the Galois (finite) Field of size q

GLn(F) the group of n×n invertible matrices over the field F

HFE Hidden Field Equations

LUP Lower triangular-Upper triangular-Permutation (a matrix factorization)

KPA Known Plaintext Attack

M4RM The Method of Four Russians for matrix Multiplication

M4RI The Method of Four Russians for matrix Inversion

Mn(R) the ring of n×n matrices over the ring R

MC The Multivariate Cubic problem

MQ The Multivariate Quadratic problem

OWF One-way Function

QUAD The stream cipher defined in [42]

REF Row Echelon Form

RPA Random Plaintext Attack

RREF Reduced Row Echelon Form

SAGE Software for Algebra and Geometry Experimentation

SAT the SATisfiability problem

UUTF Unit Upper Triangular Form

XOR The exclusive-OR

xxxiii

Chapter 1

Introduction: How to Use this Book

As stated earlier, the purpose of this book is to help graduate students who wish

to learn something about algebraic cryptanalysis, or researchers from either other

branches of cryptography, computer algebra, or finite fields who may wish to try

their hand at code-breaking.

Citations for all the topics described here appear in the respective chapters, and

therefore are omitted in the introduction, to preserve readability.

Part One

With that in mind, imagine the typical process of breaking a cipher algebraicly.

First, one must convert the cipher into a system of polynomial equations. Therefore,

this is the topic of Part One of this book. The author has chosen the cipher Keeloq

for several reasons. First off, it is a commercially used cipher, from the “real world”.

Second, it is broken completely, not in some “reduced rounds” version. Third, it is

rather simple. Fourth, the direct process (of converting the cipher to equations and

then solving it directly) was an absolute failure. Instead, one had to take an indi-

rect approach, and use mathematical properties of the cipher, in order to accomplish

anything1 at all. In any case, Chapter 2 describes how to turn the cipher into polyno-

mials, and Chapter 3 describes the attack from my dissertation, along with another

attack. Then, in Chapter 4, we describe the analysis of iterated permutations through

analytic combinatorics—a field that uses sequences and series to count objects. That

chapter also includes an attack that we believe to be very novel, in which one can

target any cipher that has been iterated a large composite number of times, but not

one that has been iterated a large prime number of times. Finally, in Chapter 5, we

discuss stream ciphers—in particular, QUAD (a family of stream ciphers), as well

as Bivium-A, Bivium-B and Trivium.

1 Many researchers who claim that their systems are immune to algebraic attacks may wish to

dwell on this point in some detail.

© Springer Science + Business Media, LLC 2009

1G.V. Bard, Algebraic Cryptanalysis, DOI: 10.1007/978-0-387-88757-9_1

2 1 Introduction: How to Use this Book

The Keeloq attack in my dissertation was discovered in January of 2007, and

much better ones have been published since. Many of those newer attacks are quite

interesting, and the author is a coauthor of two papers containing these later attacks.

The reader is encouraged to examine those and any other papers on Keeloq as a

second stage. They are not included here because once one has seen one algebraic

attack, in perhaps excessive detail, then one has a general idea of how the subject

functions and one can move on to solving the polynomials themselves. Furthermore,

the author has been careful to provide several references for each cipher, to aide the

reader in moving from this text directly into the published literature.

Part Two

The second stage, now that a polynomial system of equations describes the ci-

pher, is to solve the system of equations. Many methods of doing this relate to linear

systems of polynomial equations. The XL algorithm and the ElimLin algorithm both

have linear algebra at their core. Also, several Gröbner Bases finding algorithms,

including F4 and F5 by Faugére, also involve linear algebra. Even if one is using

SAT-solvers, the ElimLin algorithm is an excellent preprocessor, and so linear alge-

bra is important. Furthermore, working with the linear systems allows us to practice

with some of the properties of finite fields, in general.

The theorems of linear algebra are usually true over any field, but others require

editing in the case of a finite field, or in the case of a field with non-zero characteris-

tic. In any case, this Chapter 6 discusses a few aspects of finite field linear algebra,

principally related to GF(2), and cryptanalysis. There are many aspects that the

reader might find surprising.

Next we propose, in Chapter 7, a model for measuring the complexity of GF(2)-
matrix operations. For matrices over R,C, or Q, usually the number of floating-point

operations is counted. However, this makes no sense in our case, as there are no

floating point operations. Instead, one could count the number of field operations—

but field operations are quite fast (being a single gate). One could count the number

of total instructions but then one has to worry about loop increments and other very

tedious details of the implementation. Instead, we propose counting the number of

matrix memory operations, meaning reads and writes to the original matrix. Dur-

ing that chapter, we also calculate the running times of many basic linear algebra

operations.

In Chapter 8 we state the classical theorems that matrix inversion, matrix mul-

tiplication, LUP-factorization, matrix squaring, and triangular matrix inversion, are

all Big-Θ of each other. For sure, this chapter can be skipped if the reader is not

interested, and the material is somewhat disconnected from the rest of the book,

but we believe it will be useful to go through them. These facts have been known

for a long time, but the author could not find any source that had them all located

together. Here, we prove these with maximum generality (i.e. over any field), and

all of them in the same notation. This is done for several reasons. First, many times

1 Introduction: How to Use this Book 3

these tricks (used in proving the theorems) are actually useful in using an existing

method of solving one problem by switching to another problem—one that the pro-

grammer already knows how to solve. Second, the theorems are really elegant and

precise explorations of linear algebra. Third, this is excellent practice in the nuances

of the complexity of linear algebra.

In particular, the Morgenstern exposition of the Baur-Strassen Theorem (see The-

orem 53 on Page 121) is exquisite. By coincidence, as the author was working on the

bibliography of this book during Eurocrypt’09, the paper [12] was being presented.

In that paper, a proof is given that breaking RSA in a certain model is equivalent

to factoring—and the model is remarkably similar to the model in Morgenstern’s

proof. In fact, several other papers (cited by [12]) have also used this “generic ring”

model. Thus there is some connection to cryptography.

The proofs are by no means of theoretical interest only. The so-called “black-

box” techniques from sparse linear algebra involve taking a rapid algorithm for

multiplying a matrix times a vector, and from there, building all higher matrix op-

erations. Instead, one could imagine some day having some sort of rapid oracle for

some particular matrix operation. How would one construct the other matrix opera-

tions from this oracle? The proofs are constructive, and so specify exactly how that

would be done. We hope that the reader will find our proofs stimulating. Nonethe-

less, this material is not strictly needed and if the reader finds it boring, the entire

chapter can be skipped without harm to the understanding of the other chapters.

Chapter 9, contains two algorithms. The first is the Method of Four Russians

for Multiplication, and has been known for a long time, e.g. it appears in [13, Ch.

6]. This runs in time Θ(n3/ logn) instead of Θ(n3). However, we perform detailed

analysis that we are certain has not appeared before, and convert the algorithm from

matrices over the boolean semiring into matrices over GF(2) (see Section 6.2 on

Page 81 for a discussion of the distinction). We also introduce the Method of Four

Russians for Inversion, the vague outline of which was shown to the author by Nico-

las Courtois. He has stated that this algorithm has been known anecdotally in France

for a long time, but we perform quite a bit of analysis. Also, this algorithm has been

adopted into SAGE, the open source free software competitor to MAGMA, MAPLE,

MATLAB, and MATHEMATICA.

In Chapter 10, we step away from algebraic cryptanalysis to discuss factoring.

The motivation is that we have now invested many pages in studying linear systems

of equations in GF(2), and now we can apply this to our main problem of breaking

stream ciphers and block ciphers. However, linear systems over GF(2) are also very

important in factoring, which in turn is the backbone of part of the cryptanalysis of

RSA. Thus, going with the general theme of code-breaking, the author decided to

touch on the very basics of the Linear Sieve and Quadratic Sieve (QS). This could

have been the topic of an entire other book (e.g. see [54]), and so we only present

the tip of the iceberg. Numerous enhancements have been made to the Quadratic

Sieve and it also has been surpassed by the Number Field Sieve (NFS). However,

the linear algebra step of the NFS is the same as the QS, and the NFS is easier to

understand if one is familiar with the QS. We hope the reader will enjoy this side-

4 1 Introduction: How to Use this Book

trip, but again this material is not needed for understanding the other chapters and

so can be skipped.

Part Three

In Part Three, we examine how to solve polynomial systems of equations, and

this is the very heart of the book. The polynomial systems arise from ciphers in

Part One. This is a very hard problem, and if any efficient (i.e. polynomial time)

algorithm ever solves this problem, then P = NP, which would be a surprise. It

is also noteworthy that these polynomials are obviously over finite fields and not

the rational, real or complex numbers, and therefore these polynomials might have

properties which are alien to those researchers who are perhaps more accustomed to

traditional polynomials.

Accordingly, Chapter 11 discusses the properties of polynomials over these fi-

nite fields. This includes a discussion on why we should solve polynomials at all.

Cryptanalysis is only one of several applications, and we briefly mention some other

applications. The concept of a universal map is also introduced. Namely, we prove

that any map from any finite set to any finite set can be considered as a polynomial

system of equations. After that follows a discussion of the properties of these poly-

nomials. Next, we prove several theorems relating to the fact that any polynomial

system of equations can be written with degree 2, via the introduction of new vari-

ables. This is true not only over finite fields, but over any ring. We also provide some

algorithms for doing this, and show that it is a polynomial time activity for any fixed

degree of the input system.

The chapter continues with a discussion of the NP-Completeness of solving poly-

nomial systems of equations. Here we have been excessively detailed because of

the fact that any researcher with a strong background in NP-Completeness already

knows all the results in that discussion. Therefore, we are compelled to assume that

anyone who needs to read that section is one who is new to the NP-Completeness

topic. We conclude the chapter with two minor discussions: measures of difficulty

of particular cases of polynomial systems, and the role of guessing a few variables

prior to computation. This is the “guess-and-determine” paradigm.

After this introduction, we proceed to survey the methods of solving polynomial

systems of equations in Chapter 12. There are many methods, and the author hopes

he has not omitted any. The methods of Nicolas Courtois have received additional

attention, because they work quite well in practice. In fact, the XL and ElimLin al-

gorithms, coupled with the traditional Buchberger algorithm or the newer Faugére

algorithms F4 and F5, for finding a Gröbner Basis, or coupled with SAT-Solvers,

are sufficient to solve all the systems of polynomial equations over finite fields that

the author has ever successfully solved. Furthermore, many researchers see a di-

chotomy, that one can either take the math-heavy approach, and use Gröbner Bases,

or the CS-heavy approach, using SAT-Solvers and XL. The author rejects this di-

1 Introduction: How to Use this Book 5

chotomy. For example, ElimLin can be an excellent preprocessor for a Gröbner

Bases approach, and so forth.

As mentioned in the preface, the theory of Gröbner Bases is very important to

all of Algebraic Cryptanalysis. In fact, the general theory of polynomial systems of

equations is far better understood when one becomes familiar with Gröbner Bases

methods. The book Ideals, Varieties and Algorithms by Cox, Little and O’Shea [86]

covers this topic exceptionally well, and is extremely easy to read. We therefore

defer all discussion on Gröbner Bases to that text, and strongly encourage the reader

to read at least Chapters 2–4 of it.

Also in Chapter 12 we present an application of graph theory, where polynomial

systems that are “interconnected” by only a few variables can be greatly simplified.

Essentially, we target systems of polynomial equations where there are two sets of

equations, and only a few variables are in common between one set and the other.

We provide an algorithm where systems with this property can have it discovered.

By either guessing the variables that would snap the system in half, or by using re-

sultants to explicitly find values of these variables, the system is then broken into

two pieces, which hopefully can be solved more easily. Next, we describe Resul-

tants, a subject which has not been heavily explored by cryptanalysts, but which has

proven to be very useful in other areas of applied algebraic geometry. Three addi-

tional methods are added in there. The Raddum-Semaev method is very new, and

different. The Zhang-zi algorithm is also new, but less has been written about it. Fi-

nally, homotopy methods, about which a great deal has been written, are presented

but it should be noted that the author is relatively confident they cannot possibly be

used in cryptanalysis.

The author is very excited about SAT-Solvers, but, he hopes he has not expended

too many pages on this topic. In fact, three chapters are dedicated to this matter.

First, we discuss in Chapter 13, how to approach polynomial systems of equations

over GF(2), with a SAT-Solver. In the next chapter, we describe how SAT-Solvers

actually work inside. We would like to stress that they should not be viewed as black-

boxes, though if one wishes to do so they can operate as black-boxes. After that, in

Chapter 15, we approach finite fields of characteristic 2, up to size GF(64). In fact,

the technique for extension fields can also be applied to Gröbner Bases solutions,

not just SAT-solvers, and essentially projects a system of equations from GF(2n)
down to GF(2).

Appendices

There are five appendices. The first is a discussion on block ciphers with very

short plaintext inputs, but normal-sized keys. This is more of a philosophical dis-

cussion of what is relevant, and what is not, what is common and what is not, and

what “faster than brute force” really means. We segregate it from the rest of the

text because it is mostly opinion, though backed by evidence, and not a sequence of

provable theorems.

6 1 Introduction: How to Use this Book

The second appendix is the collection of equations used in Chapter 15, to con-

vert the multiply operation over GF(2n) into that over GF(2). We recommend that

if needed, they be scanned with Optical Character Recognition, and not typed in

manually.

The third appendix is a discussion of how to use the methods of this text to solve

four interesting problems: graph coloring, radio channel assignment, and register

allocation during compiler optimization, as well as lecture hall scheduling. The lat-

ter three are just special cases of the former. We also very briefly discuss interval

graphs.

The fourth appendix is a series of references for sparse matrix algorithms, along

with a description of Carl Pomerance’s “Created Catastrophes” algorithm, which

others have called “structured Gaussian Elimination.”

The fifth appendix is a small subset of the collection of quotes that were found

in my dissertation. It is traditional among older American textbooks to begin the

text or even each chapter with a witty quote or quotes. For example, Steve Krantz

in [151] and von zur Gathen & Gerhard in [121] continue to do this in the present

day. The author likes this habit, but did not have a full enough supply of quotes. But

these are really meant to be truly inspirational, and the author hopes that the reader

will actually read them.

Suggested Chapter Ordering

Most readers will have to read the book twice. If the reader comes to this topic

with foreknowledge of it, then you can read the chapters in any order, of course. But

in order to grasp why we wish to do things various ways in the polynomial systems

and linear algebra parts of the book, one must know how algebraic cryptanalysis will

proceed. Likewise, when reading about algebraic cryptanalysis, all sorts of decisions

are made in the process of converting a cipher into a system of equations, in order

that the linear and polynomial systems will be efficiently solvable. Therefore, the

“math part” and the “crypto part” depend heavily on each other. The best strategy

for a beginner is to skim each part (perhaps skipping Chapter 4 and Chapter 8) and

then go back to the beginning, and read each chapter in detail.

Theorem Numbering

A brief note is needed, before we continue. The theorems, lemmas, facts, and

definitions in this book are numbered sequentially together. That is, if a lemma

follows Theorem i, it is Lemma i + 1. That means there is no Theorem i + 1 or

Lemma i. If a theorem follows these, it will be Theorem i + 2. This numbering is

meant to facilitate cross-referencing, and was recommended by Steven G. Krantz in

[150].

Chapter 2

The Block Cipher Keeloq and Algebraic Attacks

The purpose of this chapter is to supply a (relatively) new, feasible, and econom-

ically relevant example of algebraic cryptanalysis. The block cipher “Keeloq”1 has

been used in the remote keyless-entry system of many automobiles. It has a secret

key consisting of 64 bits, takes a plaintext of 32 bits, and outputs a ciphertext of 32

bits. The cipher consists of 528 rounds. In this chapter, we define the cipher. We also

show some “frontal assaults” that are not effective. In the next chapter, we describe

a successful attack from the author’s dissertation [31, Ch. 2]. Our attack is faster

than brute force by a factor of around 214.77 as shown in Section 3.5 on Page 24. A

summary of the attack is given in Section 3.6 on Page 24.

Many other attacks on Keeloq are known, discovered since this attack of mine

was first written back in January of 2007. In fact, it seems clear from the dates

of publication of other attacks, that work on Keeloq was simultaneous among the

several research teams involved (see Section 3.8.1 on Page 27). The purpose here

is not to describe all or even some of the attacks on Keeloq but to give the reader a

non-trivial but straight-forward example of algebraic cryptanalysis succeeding on a

real-world cipher.

Notational Convention

For any ℓ-bit sequence, the least significant bit is numbered 0 and the most sig-

nificant bit is numbered ℓ−1.

1 This is to be pronounced “key lock.” Some authors typeset it “KeeLoq” but we find the presence

of a capital letter in the middle of a word to be offensive to the eye.

© Springer Science + Business Media, LLC 2009

G.V. Bard, Algebraic Cryptanalysis, DOI: 10.1007/978-0-387-88757-9_2 9

10 2 The Block Cipher Keeloq and Algebraic Attacks

2.1 What is Algebraic Cryptanalysis?

Given a particular cipher, algebraic cryptanalysis consists of two steps. First,

one must convert the cipher and possibly some supplemental information (e.g. file

formats) into a system of polynomial equations, usually over GF(2), but sometimes

over other rings. Second, one must solve the system of equations and obtain from the

solution the secret key of the cipher. This chapter deals with the first step only. The

systems of equations were solved with SINGULAR [9], MAGMA [2], and with the

SAT-solver techniques of Chapter 13, as well as ElimLin, an algorithm by Nicolas

Courtois described in Section 12.5 on Page 219.

2.1.1 The CSP Model

In any constraint satisfaction problem, there are several constraints in several

variables. A solution must satisfy all constraints, and there might be zero, one, or

more than one solution. The constraints are models of a cipher’s operation, rep-

resenting known facts as equations. Most commonly, this includes µ plaintext-

ciphertext pairs, P1, . . . ,Pµ and C1, . . . ,Cµ , and the µ facts: E(Pi) = Ci for all

i ∈ {1, . . . ,µ}. The key is represented by one unknown for each bit. Almost always

there are additional constraints and variables besides these.

If no false assumptions are made, then because these messages were indeed sent,

we know there must be some key that was used, and so at least one key satisfies

all the constraints. And so it is either the case that there are one, or more than one

solution. Generally, algebraic cryptanalysis consists of writing enough constraints

to reduce the number of possible keys to one, and few enough constraints that the

system is solvable in a reasonable amount of time. In particular, the entire process

should be faster than brute force by some margin.

2.2 The Keeloq Specification

In Figure 2.1 on Page 11, the diagram for Keeloq is given. The top rectangle is a

32-bit shift-register. It initially is filled with the plaintext. At each round, it is shifted

one bit to the right, and a new bit is introduced. The computation of this new bit is

the heart of the cipher.

Five particular bits of the top shift-register are tapped and are interpreted as a

5-bit integer, between 0 and 31. Then a non-linear function is applied, which will be

described shortly (denoted NLF).

Meanwhile the key is placed initially in a 64-bit shift-register, which is also

shifted one bit to the right at each iteration. The new bit introduced at the left is

the bit formerly at the right, and so the key is merely rotating.

2.3 Modeling the Non-linear Function 11

Fig. 2.1 The Keeloq Circuit Diagram

The least significant bit of the key, the output of the non-linear function, and two

particular bits of the 32 bit shift-register are XORed together (added in GF(2)). The

32-bit shift-register is shifted right and the sum is now the new bit to be inserted into

the leftmost spot in the 32-bit shift-register.

After 528 rounds, the contents of the 32 bit shift-register form the ciphertext.

Observe that only one bit of the key is used per round.

2.3 Modeling the Non-linear Function

The non-linear function NLF(a,b,c,d,e) is denoted NLF3A5C742E. This means

that if (a,b,c,d,e) is viewed as an integer i between 0 and 31, i.e. as a 5-bit number,

then the value of NLF(a,b,c,d,e) is the ith bit of the 32-bit hexadecimal value

3A5C742E. Recall, the least significant bit is numbered as 0.

The following formula is a cubic polynomial and gives equivalent output to the

NLF for all input values, and was obtained by a Karnaugh map. In this case, the

Karnaugh map is a grid with (for five dimensions) two variables in rows (i.e. 4 rows),

and three variables in columns (i.e. 8 columns). The rows and columns are arranged

via the Gray Code. This is a simple technique to rapidly arrive at the algebraic

normal form (i.e. polynomial), listed below, by first trying to draw boxes around

12 2 The Block Cipher Keeloq and Algebraic Attacks

regions of ones of size 32, 16, 8, 4, 2, and finally 1. See a text such as [38, Ch. 3]

for details.

NLF(a,b,c,d,e) = d + e+ac+ae+bc+be+ cd +de+ade+ace+abd +abc

2.3.1 I/O Relations and the NLF

Also note that while the degree of this function is 3, there is an I/O relation of

degree 2, below. An I/O relation is a polynomial in the input variables and output

variables of a function, such that no matter what values are given for input to the

function, the I/O relation always evaluates to zero. Note y signifies the output of the

non-linear function.

(e+b+a+ y)(c+d + y) = 0

This can be thought of as a constraint that the function must always satisfy. If there

are enough of these, then the function is uniquely defined. What makes them crypt-

analyticly interesting is that the degree of the I/O relations can be much lower than

the degree of the function itself. Since the degree dramatically impacts the difficulty

of solving the polynomial system, this is very useful. The I/O degree of a function

is the lowest degree of any of its I/O relations, other than the zero polynomial.

Generally, I/O-relations of low degree can be used for generating attacks but that

is not the case here, because we have only one relation. Heuristically, relations that

are valid with low probability for a random function and random input produce

a more rapid narrowing of the keyspace in the sense of a Constraint Satisfaction

Problem or CSP. We are unaware of any attack on Keeloq that uses this I/O-relation.

An example of the possibility of using I/O degree to cryptanalytic advantage is

the attack from the author’s joint paper on DES (the Data Encryption Standard),

with Nicolas T. Courtois, where the S-Boxes have I/O degree 2 but their actual

closed-form formulas are of higher degree [76].

2.4 Describing the Shift-Registers

The shift-registers that appear in Keeloq are an example of a very common, al-

most ubiquitous circuit design block in both stream ciphers (see Section 5.1.1.1 on

Page 55) and block ciphers.

2.5 The Polynomial System of Equations 13

2.4.1 Disposing of the Secret Key Shift-Register

The 64-bit shift-register containing the secret key rotates by one bit per round.

Only one bit per round (the rightmost) is used during the encryption process. Fur-

thermore, the key is not modified as it rotates. Therefore, the key bit being used is

the same in round t, t +64, t +128, t +192, . . .
Therefore we can dispose of the key shift-register entirely. Denote k63, . . . ,k0 the

original secret key. The key bit used during round t is merely k
t−1 mod 64.

2.4.2 Disposing of the Plaintext Shift-Register

Denote the initial condition of this shift-register as L31, . . . ,L0. This corresponds

to the plaintext P31, . . . ,P0. Then in round 1, the values will move one place to the

right, and a new value will enter in the first bit. Call this new bit L32. Thus the

bit generated in the ith round will be L31+i, and in the 528th and thus last round

will be L559. The ciphertext is the final condition of this shift-register, which is

L559, . . . ,L528 = C31, . . . ,C0, likewise L31, . . . ,L0 = P31, . . . ,P0.

Change of Indexing

A change of indexing is useful here. The computation of Li, for 32 ≤ i ≤ 559,

occurs during the round numbered t = i− 31. Thus the key bit used during the

computation of Li is k
i−32 mod 64.

2.5 The Polynomial System of Equations

This now gives rise to the following system of equations.

Li = Pi ∀i ∈ [0,31]

Li = k
i−32 mod 64 +Li−32 +Li−16 ∀i ∈ [32,559]

+NLF(Li−1,Li−6,Li−12,Li−23,Li−30)

Ci−528 = Li ∀i ∈ [528,559]

Note, some descriptions of the cipher omit the +Li−16. This should have no im-

pact on the attack at all. Most research papers and the specification given by the

company [94] includes the +Li−16, as does our diagram; some early papers omitted

it.
Since the NLF is actually a cubic function this is a cubic system of equations.

Substituting, we obtain

14 2 The Block Cipher Keeloq and Algebraic Attacks

Li = Pi ∀i ∈ [0,31]

Li = k
i−32 mod 64 +Li−32 +Li−16 +Li−23 +Li−30

+Li−1Li−12 +Li−1Li−30 +Li−6Li−12 +Li−6Li−30 ∀i ∈ [32,559]
+Li−12Li−23 +Li−23Li−30 +Li−1Li−23Li−30

+Li−1Li−12Li−30 +Li−1Li−6Li−23 +Li−1Li−6Li−12

Ci−528 = Li ∀i ∈ [528,559]

In other words, the above equations are to be repeated for each i in the stated

intervals, and for each of µ total plaintext-ciphertext message pairs. In practice,

µ ≥ 2 was both necessary and sufficient.

2.6 Variable and Equation Count

Consider a plaintext-ciphertext pair P,C. There are 560 equations, one for each

Li, with i ∈ [0,559], plus another 32 for the Ci, with i ∈ [0,32]. However, the first 32

of these are of the form Li = Pi for i ∈ [0,32], and the last 32 of these are of the form

Li = Ci−528 for i ∈ [528,559]. Thus we can use string substitution and drop down to

528 equations. This is precisely one equation for each round, which defines the new

bit introduced into the shift register.

The 64 bits of the key are unknown. Also, of the 560 Li, the first and last 32

are known, but the inner 496 are not. This yields 560 unknowns. If there are µ
plaintext-ciphertext message pairs, then there are 528µ equations. However, there

are only 496µ +64 variables, because the key does not change from pair to pair.

2.7 Dropping the Degree to Quadratic

The following is a specific application of the more general technique found in

Section 11.4 on Page 192. We will change the system from cubic to quadratic by

introducing a few variables. Instead of the previously derived

NLF(a,b,c,d,e) = d + e+ac+ae+bc+be+ cd +de+ade+ace+abd +abc

one can write

NLF(a,b,c,d,e) = d + e+ac+β +bc+be+ cd +de+dβ + cβ +αd +αc

α = ab

β = ae

Since the non-linear function was the sole source of non-linear terms, this gives

rise to a quadratic rather than cubic system of equations.

2.8 Fixing or Guessing Bits in Advance 15

This introduces two new variables per original equation, and two new equations

as well. Thus m equations and n variables becomes 3m equations and n + 2m vari-

ables. Therefore with µ plaintext-ciphertext message pairs, we have 1584µ equa-

tions and 1552µ +64 variables. Thus, it must be the case that µ > 1 for the system

to be expected to have at most one solution. As always with algebraic cryptanalysis,

unless we make an assumption that is false, we always know the system of equa-

tions has at least one solution, because a message was indeed sent. And thus we very

strongly expect to have a unique solution when µ > 1.

Li = Pi ∀i ∈ [0,31]
Li = k

i−32 mod 64 +Li−32 +Li−16 +Li−23 +Li−30

+Li−1Li−12 +βi +Li−6Li−12 +Li−6Li−30 +Li−12Li−23

+Li−23Li−30 +βiLi−23 +βiLi−12 +αiLi−23 +αiLi−12 ∀i ∈ [32,559]

αi = Li−1Li−6 ∀i ∈ [32,559]
βi = Li−1Li−30 ∀i ∈ [32,559]

Ci−528 = Li ∀i ∈ [528,559]

Even with µ = 2 this comes to 3168 equations and 3168 unknowns, well beyond

the threshold of size for feasible polynomial system solving at the time this book

was written, in late 2007.

2.8 Fixing or Guessing Bits in Advance

This is a specific application of the guess-and-determine methodology which is

very common in many forms of cryptanalysis. For a general discussion, see Sec-

tion 11.7 on Page 206, Section 12.4.4 on Page 217, or Section 11.7.2 on Page 207.

Sometimes in Gröbner basis algorithms or the XL algorithm, one fixes bits in

advance [71, et al]. For example, in GF(2), there are only two possible values. Thus

if one designates g particular variables, there are 2g possible settings for them, but

one needs to try 2g/2 on average (if we know exactly one solution exists). Naturally,

fewer guesses would be needed if we merely search for one of many solutions. For

each guess, one rewrites the system of equations either by substituting the guessed

values, or if not, then by adding additional equations of the form: k1 = 1,k2 = 0,
If the resulting Gröbner Bases method or XL method running time is more than

2g/2 times faster as a result of this change, this is a profitable change.

In academic cryptanalysis however, one generates a key, encrypts µ messages,

and writes equations based off of the plaintext-ciphertext pairs and various other

constraints and facts. Therefore, one knows the key. Instead of guessing all 2g pos-

sible values, we simply guess correctly. However, two additional steps must be re-

quired. First, we must adjust the final running time by a factor of 2g in the worse-

case, or 2g/2 in the average case. Second, we must ensure that the system identifies

a wrong guess as fast, or faster, than solving the system in the event of a correct

guess. See Section 11.7.1 on Page 206 for more details on this point.

16 2 The Block Cipher Keeloq and Algebraic Attacks

2.9 The Failure of a Frontal Assault

First we tried a simple CSP. With µ plaintext messages under one key, for various

values of µ we encrypted and obtained ciphertexts, and wrote equations as described

already, in Section 2.7 on Page 15. We also used fewer rounds than 528, to see the

impact of the number of rounds, as is standard. The experiments were an obvious

failure, and so we began to look for a more efficient attack, presented in the next

chapter. Note, the computer involved was a 1 GHz Intel PC with 1 gigabyte of

RAM.

• With 64 rounds, and µ = 4, and 10 key bits guessed, SINGULAR required 70

seconds, and ElimLin in 10 seconds.

• With 64 rounds, and µ = 2 but the two plaintexts differing only in one bit (the

least significant), SINGULAR required 5 seconds, and ElimLin 20 seconds. MIN-

ISAT[6] [104], using the techniques of Chapter 13, required 0.19 seconds. Note,

it is natural that these attacks are faster, because many internal variables during

the encryption will be identically-valued for the first and second message.

• With 96 rounds, µ = 4, and 20 key bits guessed, MINISAT and the techniques

of Chapter 13, required 0.3 seconds.

• With 128 rounds, and µ = 128, with a random initial plaintext and each other

plaintext being an increment of the previous, and 30 key bits guessed, ElimLin

required 3 hours.

• With 128 rounds, and µ = 2, with the plaintexts differing only in the least signif-

icant bit, and 30 key bits guessed, MINISAT requires 2 hours.

These results on 128 rounds are slower than brute-force. Therefore we did not

try any larger number of rounds or finish trying each possible combination of soft-

ware and trial parameters. Needless to say the 528 round versions did not terminate.

Therefore, we needed a new attack, and this is the topic of the next chapter.

Chapter 3

The Fixed-Point Attack

3.1 Overview

Here the author will explain the attack that was the opening of his dissertation.

The goal is first, to rewrite the cipher as a function g executed on the output of a

function f which is iterated 8 times on the plaintext. Next, we will strip away g,

and try to find fixed points of the 8th iterate of f . Some of these are fixed points of

f . Using fixed points of f , we can recover the secret key by solving a polynomial

system of equations. As you can see, the attack is rather indirect.

3.1.1 Notational Conventions

Evaluating the function f eight times will be denoted f (8).

If h(x) = x for some function h, then x is a fixed point of h. If h(h(x)) = x but

h(x) 6= x then x is a “point of order 2” of h. In like manner, if h(i)(x) = x but h(j)(x) 6=
x for all j < i, then x is a “point of order i” of h. Obviously if x is a point of order i

of h, then

h(j)(x) = x if and only if i| j

3.1.2 The Two-Function Representation

Recall that each 64th round uses the same key bit. In other words, the same bit is

used in rounds t, t + 64, t + 128, Note further, 528 = 8× 64 + 16. Thus the key

bits k15, . . . ,k0 are used nine times, and the key bits k63, . . . ,k16 are used eight times.

With this in mind, it is clear that the operation of the cipher can be represented

as

© Springer Science + Business Media, LLC 2009

17G.V. Bard, Algebraic Cryptanalysis, DOI: 10.1007/978-0-387-88757-9_3

18 3 The Fixed-Point Attack

Ek(P) = gk(fk(fk(· · · fk
︸ ︷︷ ︸

8 times

(P) = gk(f
(8)
k (P)) = C

where the fk represents 64 rounds, and the gk the final 16 “extra” rounds.

3.1.3 Acquiring an f
(8)
k -oracle

Suppose we simply guess the 16 bits of the key denoted k15, . . . ,k0. Of course,

we will succeed with probability only 2−16. But at that point, we can evaluate gk or

its inverse g−1
k . Then,

g−1
k (Ek(P)) = g−1

k (gk(f
(8)
k (P))) = f

(8)
k (P)

and our oracle for Ek now gives rise to an oracle for f
(8)
k .

3.2 The Consequences of Fixed Points

For the moment, assume we find x and y such that fk(x) = x and fk(y) = y.

How these are obtained will be explained later, but for now assume such points are

known. At first, this seems strange to discuss at all. Because fk(x) = x and therefore

f
(8)
k (x) = x, we know Ek(x) = gk(f

(8)
k (x)) = gk(x). But, gk(x) is part of the cipher

that we can remove by guessing a quarter (16 bits) of the key. Therefore, if we

“know something” about x we know something about multiple internal points, the

input, and output of Ek(x). Now we will make this idea more precise.

Intuitively, we now know 64 bits of input and 64 bits of output (32 bits each

from each message) of the functions fk and f
(8)
k as well. This forms a very rigid

constraint, and it is highly likely that only one key could produce these outputs.

This means that if we solve the system of equations for that key, we will get exactly

one answer, which is the secret key. The only question is if the system of equations

is rapidly solvable or not.

The resulting system must have equations for the 64 rounds of f . For both of x

and y, there are equations for L0, . . . ,L95 and 32 additional output equations, but the

first 32 of these and last 32 of these (in both cases) are of the forms Li = xi and

Li−64 = xi, and can be eliminated by substituting, as discussed in Section 2.6 on

Page 14. Thus there are actually 96 + 32− 32− 32 = 64 equations (again one per

round) for both x and y, and thus 128 total equations. We emphasize that this is the

same system of equations as Section 2.5 on Page 13 but with only 64 rounds for

each message. More precisely i∈ [0,95] not i∈ [0,559], but otherwise the equations

are unchanged.

3.3 How to Find Fixed Points 19

The xi’s and yi’s are known. Thus the unknowns are the 64 bits of the key, and

the 32 “intermediate” values of Li for both x and y. This is 128 total unknowns.

After translating from cubic into quadratic format, it becomes 384 equations and

384 unknowns. This is much smaller than the 3168 equations and 3168 unknowns

we had before. In each case, ElimLin, MAGMA [2], SINGULAR[9], and the SAT-

solver methods of Chapter 13 solved the system for k0, . . . ,k63 in time too short to

measure accurately (i.e. less than 1 minute).

It should be noted that we required two fixed points, not merely one, to make

the attack work. One fixed point alone is not enough of a constraint to narrow the

keyspace sufficiently. However, two fixed points was sufficient each time it was

tried. Therefore, we will assume f has two or more fixed points, and adjust our

probabilities of success accordingly. One way to look at this is to say that only those

keys which result in two or more fixed points are vulnerable to our attack. However,

since the key changes rapidly in most applications (See Section 3.7.1 on Page 25),

and since approximately 26.42% of random functions GF(2)32→GF(2)32 have this

property (see Section 2 on Page 22), we do not believe this to be a major drawback.

This is calculated without analytic combinatorics in the author’s dissertation [31,

Ch. 2.4].

3.3 How to Find Fixed Points

Obviously a fixed point of fk is a fixed point of f
(8)
k as well, but the reverse is not

necessarily true. Stated differently, the set of fixed points of f
(8)
k will contain the set

of all fixed points of fk.

We will first calculate the set of fixed points of f
(8)
k , which will be very small. We

will try the attack given in the previous subsection, using every pair of fixed points.

If it is the case that fk has two or more fixed points, then one such pair of points

of f (8) that we try will indeed be a pair of fixed points of fk. This will produce

the correct secret key. The other pairs will produce spurious keys or inconsistent

systems of equations. But this is not a problem because spurious keys can be easily

detected and discarded, by a few test encryptions.

The running time required to solve the system of equations is too short to accu-

rately measure, with a valid or invalid pair. Recall, that this is 384 equations and 384

unknowns as compared to 3168, as explained at the end of the previous section.

There are probably very few fixed points of f
(8)
k , which we will prove below. And

thus the running time of the entire attack depends only upon finding the set of fixed

points of f
(8)
k . One approach would be to iterate through all 232 possible plaintexts,

using the f
(8)
k oracle. This would clearly uncover all possible fixed points of f

(8)
k

and if fk has any fixed points, they would be included. However, this is not efficient.

Instead, one can simply try plaintexts in sequence using the f
(8)
k oracle. When the

ith fixed point xi is found, one tries the attack with the i−1 pairs {(x1,xi), (x2,xi),
. . . , (xi−1,xi)}. If two fixed points of fk are to be found in x1, . . . ,xi, the attack will

20 3 The Fixed-Point Attack

succeed at this point, and we are done. Otherwise, continue until xi+1 is found and

try the pairs {(x1,xi+1), (x2,xi+1),. . . ,(xi,xi+1)}, and so forth.

INPUT: Oracular access to Ek(x) for some unknown k, a randomly generated secret key.

OUTPUT: The secret key k with probability 2−17.92, or “abort” in all other cases.

1: Guess the 16 bits of the key k0,k1, . . . ,k15.

2: Define the f (8) oracle to be f
(8)
k

de f
= g−1

k (Ek(x)).
3: P←{}
4: For x = 0 . . .232−1 do

a. If f
(8)
k (x) = x then do

i. For each y ∈ P do

A. Write equations assuming fk(x) = x and fk(y) = y.

B. Try to solve those equations.

C. If the equations yield a key k′, see if Ek(x) = gk′ (x) and Ek(y) = gk′ (y).
• If YES: Halt and report k′ is the secret key.

• If NO: do nothing.

ii. Insert x into P.

5: Abort.

Algorithm 1: The Fixed Point Attack on Keeloq [G. Bard]

3.4 How far must we search?

The question of how far one must search, in looking for fixed points of f (8),

before one can find 2 fixed points of f , is crucial for determining the running time

of the attack. Here, we present two ways of looking at this.

First, we will scan η232 plaintext-ciphertext pairs, or a fraction η of the entire

codebook. Then, we will only keep fixed points of f (8). A subset of these will be

fixed-points of f . So for each pair of fixed points of f (8) we will “hope” that it

is a pair of fixed-points of f , and then try to solve our system of equations. Our

“hope” will succeed eventually if f has 2 fixed points inside the subset of the η232

plaintext-ciphertext pairs which we searched, and if not, it will not. We use analytic

combinatorics to calculate precisely how long we should anticipate that this will

take. This is what was done in [75].

The other way of looking at this is essentially to set η = 0.6, and calculate the

probability of success. This is what was done in the author’s dissertation [31, Ch.

2].

3.4 How far must we search? 21

3.4.1 With Analytic Combinatorics

As stated before, we require two fixed points of f to write the system of poly-

nomial equations that will yield a key for us. The question becomes how to obtain

those pairs.

First, we will query η232 random plaintext-ciphertext pairs, or a fraction η of

the entire codebook. After guessing 16 bits of the secret key, g−1
k can be used and

applied to the codebook. That allows for (p,c), the plaintext-ciphertext pairs to be

replaced by (p,g−1
k (c)) which are now actually (p, f

(8)
k (p)).

Among these, if any have the same thing on both sides of the comma, then these

are points fixed by f
(8)
k and so by Corollary 13, they are points of order {1,2,4,8}

for fk. Thus, the fixed points of fk, which are useable for the cryptanalysis, are a

subset of those for f
(8)
k , which we can find.

Theorem 1. Let π be a random permutation from Sn. The probability that π has c1

fixed points and c2 cycles of lengths 2, 4, or 8, is given by

1

c1!c2!

(
7

8

)c2

e−15/8

in the limit as n→ ∞.

Proof. Note that the set of permutations on n elements, with c1 fixed points, and c2

cycles of length 2, 4, or 8, can be thought of as a triple labelled product. The first

item in the product is from P({1},c1), the second item from P({2,4,8},c2), and the

third item from P{1,2,4,8}. We must now calculate the EGF.

The first item has α(z) = z, and β (z) = zc1/c1!, for an EGF of β (α(z)) = zc1/c1!.

The second item has α(z) = z2/2 + z4/4 + z8/8, and β (z) = zc2/c2!, therefore an

EGF of β (α(z)) = 1
c2!

[
z2/2+ z4/4+ z8/8

]c2 . Finally, the third item has EGF given

by Lemma 9,

exp

(

log

(

1

1− z
−∑

i|8
zi/i

))

=
1

1− z
exp

(

−∑
i|8

zi/i

)

giving a final, total EGF of

zc1

(1− z)c1!c2!

[
z2

2
+

z4

4
+

z8

8

]c2

exp

(

−∑
i|8

zi/i

)

Multiplying by 1− z and taking the limit as z→ 1−, via Theorem 3 we obtain

1

c1!c2!

[
1

2
+

1

4
+

1

8

]c2

exp(−σ(8)/8) =
1

c1!c2!
(7/8)c2e−15/8

⊓⊔

22 3 The Fixed-Point Attack

Corollary 2. Let π be a random permutation from Sn. The probability that π has c1

fixed points is given by 1
e(c1!) in the limit as n→ ∞.

Proof. Since this is essentially the previous theorem, but allowing c2 to be any pos-

sible value, we can just sum the formula we just derived over c2 = 0,1, . . . , and

obtain

∞

∑
c2=0

1

c1!c2!
(7/8)c2e−15/8 =

e−15/8

c1!

∞

∑
c2=0

1

c2!

(
7

8

)c2

=
e−15/8

c1!

(
∞

∑
c2=0

xc2

c2!

)∣
∣
∣
∣
∣
x=7/8

=
e−15/8

c1!
e7/8 =

1

e(c1!)

as desired.

Alternatively, we could have just used Theorem 12 on Page 44. ⊓⊔

The method requires c1 ≥ 2, otherwise the attack fails. This can be easily calcu-

lated as 1−Pr{c1 = 0}−Pr{c1 = 1}= 1−2/e =≈ 0.2642 probability of success.

Second, suppose that η is the fraction of the code-book available. Then any given

fixed point is found with probability η in the known part of the code-book, and so

at least two will be found with probability

1−
(

c1

0

)

η0(1−η)c1 −
(

c1

1

)

η1(1−η)c1−1 = 1− (1−η)c1−1 [1− (c1 +1)η]

and so the following η and success probabilities can be found, generated by Theo-

rem 12 and listed in Table 3.4.1. Note, these are absolute probabilities, not proba-

bilities given c1 ≥ 2.

Table 3.1 Success Probabilities of Bard’s Dissertation Attack
η 10% 20% 30% 40% 50%

Success 0.47% 1.75% 3.69% 6.16% 9.02%

η 60% 70% 80% 90% 100%

Success 12.19% 15.58% 19.12% 22.75% 26.42%

Using MAPLE [3], one can also calculate exactly when the probability of having

the two fixed points in the η fraction of the code-book is one-half. This is at η =
63.2% remarkably close to the empirical calculation in [31, Ch. 2].

Note that while finding two fixed points of fk is enough to break the cipher, using

SAT-solvers as noted above, the fixed points of f
(8)
k are still an annoyance. Our post-

processed code-book will have all the fixed points of f
(8)
k in it, and at worst we must

try all pairs.

3.5 Comparison to Brute Force 23

If π has c1 fixed points, and c2 cycles of length 2, 4, or 8, then π8 has at most

c1 + 8c2 fixed points, as each cycle of length 2 produces 2, of length 4 produces 4,

and of length 8 produces 8. Thus of the c2 cycles of length 2, or 4, or 8, at most 8c2

fixed points are produced. This means in the code-book we have at most c1 + 8c2

fixed points, or (c1 +8c2)(c1 +8c2−1)/2 pairs of them. At absolute worst, we have

to check all of them. The expected value of the number of pairs, given c1 ≥ 2 can be

calculated with MAPLE [3], and is 113/2−105/e≈ 17.87. As each pair takes less

than a minute, this is not the rate-determining step.

The post-processing of the code-book will take much more time, η232 Keeloq

encryptions, but this is still much smaller than brute-forcing the 264 keys.

3.4.2 Without Analytic Combinatorics

These few paragraphs were written during the author’s dissertation, before he

learned about analytic combinatorics. They might therefore be useful to a reader

who is not interested in learning analytic combinatorics, but is interested in Keeloq.

One could generate a probability distribution on the possible values of n1 and n8,

the number of fixed points of fk and f
(8)
k . However, if all we need to know is how

many plaintexts must be tried until two fixed points of f are discovered, then this

can be computed by an experiment.

We generated 10,000 random permutations of size 212, 213, 214, 215 and 100,000

of 216. Then we checked to see if they had two or more fixed points, and aborted if

this were not the case. If two or more fixed points were indeed present, we tabulated

the number of fixed points of the eigth power of that permutation on composition.

Finally, we examined at which value the second fixed point of f was found, when

iterating through the values of f (8) and searching for its fixed points. The data is

given in Table 3.2 on Page 24. It shows that we must check around 60% of the

possible plaintexts (60% of the entire code-book). It also confirms the values of

n1 = 2.39 (calculated in the author’s dissertation [31, Ch. 2.4.8], or in Corollary 2

on Page 22 here) and n8 = 5.39 (also calculated in the author’s dissertation [31, Ch.

2.4.8]). Note that n8 is the expected number of points of order 1,2,4, or 8 for f , or

equivalently the expected number of fixed points of f (8), both assuming that f has

at least two fixed points.

3.5 Comparison to Brute Force

Here we compare the attack with η = 1 (using the entire codebook) with a brute

force attack. Of course, only η = 0.6 is necessary on average, and the attack can

succeed with smaller η as explained in Section 3.4 on Page 20, but it is good to be

conservative, and so we pessimistically calculate with η = 1 here.

24 3 The Fixed-Point Attack

Table 3.2 Fixed points of random permutations and their 8th powers

Size 212 212 213 214 215 216

Experiments 1000 10,000 10,000 10,000 10,000 100,000

Aborts (n1 < 2) 780 7781 7628 7731 7727 76,824

Good Examples (n1 ≥ 2) 220 2219 2372 2269 2273 23,176

Average n1 2.445 2.447 2.436 2.422 2.425 2.440

Average n8 4.964 5.684 5.739 5.612 5.695 5.746

Average Location 2482 2483 4918 9752 19,829 39,707

Percentage (η) 60.60% 60.62% 60.11% 59.59% 60.51% 60.59%

Recall, that f has two or more fixed points with probability 1−2/e, and that we

require f to have two or more. Our success probability is 2−16(1−2/e) ≈ 2−17.92.

A brute force attack which would itself have probability 2−17.92 of success would

consist of guessing 246.08 possible keys and then aborting, because 46.08+17.92 =
64, the length of the key. Therefore, our attack must be faster than 246.08 encryptions

of guesses, or 528×246.08 ≈ 255.124 rounds.

We require, for our attack, g−1
k (Ek(P)), which will need an additional 16 rounds.

Even if we use the whole dictionary of 232 possible plaintexts, this comes to (528+
16)232 ≈ 241.087 rounds, which is about 214.04 times faster than brute force.

3.6 Summary

The attack in this chapter is a constraint satisfaction problem (CSP), like all al-

gebraic attacks. Normally a CSP has zero, one, or more than one solution. In the

case of algebraic cryptanalysis, unless a false assumption is made, there is always

a solution because a message was sent. Therefore, we have only to ensure that the

constraints are sufficient to narrow down the keyspace to a single key, which is our

objective. A secondary, but crucial, objective is that the attack must finish within a

reasonable amount of time, namely faster than brute force by a wide margin.

If one has µ plaintext-ciphertext pairs encrypted with the same key, then one has

a set of constraints. Here, with Keeloq, we have one (cubic) equation for each round

that we take under consideration (See the equations at the start of Section 2.5 on

Page 13, where NLF is defined as a cubic polynomial in Section 2.3 on Page 11).

Thus there are 528µ constraints. This becomes 3 equations for each round, when

we convert into quadratic degree (see Section 2.7 on Page 14) by introducing a new

variable similar to the degree-dropper algorithm (see Section 11.4 on Page 192).

One approach is to therefore generate a key, generate µ plaintexts, encrypt them

all, write down the system of equations, and solve it. Because this might take too

long, we may elect to “guess” g bits of the key to the system of equations and

adjust the final running time by 2g, or equivalently the final probability of success

3.7 Other Notes 25

by 2−g, as described in Section 2.9 on Page 16. This is an example of a guess-and-

determine attack (see Section 11.7 on Page 206). Upon doing that, we in fact do

solve the systems (See bulleted list in Section 2.9 on Page 16), but discover that the

attack is far worse than brute force.

Instead, a fixed point is a very attractive target, in place of a plaintext-ciphertext

pair. The entire description of a fixed point of f is concerned only with the first

64 rounds. Therefore, only 64 equations are needed. However, the first objective,

namely narrowing the key down to one possibility, is not accomplished here. Instead,

two fixed points are needed. This is still a very limited number of equations, roughly

a factor of 3168/384 = 8.25 times smaller than the attack in Section 2.9 on Page 16,

both in terms of number of equations and in terms of number of variables.

If the degree were a linear system, this would be faster by a factor of 8.253 ≈
561.5 or 8.252.807 ≈ 373.7 depending on the algorithm used. Of course, solving a

polynomial system of equations is far harder than solving a linear system, so the

speed-up is expected to be very much larger than that. And so, our second objective,

which is speed, is accomplished. This leaves us with the following attack:

• Search the code-book for fixed points of f (8).

• Find two fixed points of f by trying pairs of fixed points of f (8).

• Write down the equations that describe the Constraint Satisfaction Problem

(CSP) of f having those two fixed points.

• Solve the equations.

A more detailed version of this is given in Algorithm 1 on Page 20.

3.7 Other Notes

3.7.1 A Note about Keeloq’s Utilization

An interesting note is Keeloq’s utilization in at least some automobiles. Specifi-

cally, it encrypts the plaintext 0 and then increments the key by arithmetically adding

one to the integer represented by the binary string k63, k62, . . . , k1, k0. This way the

same key is never used twice. This is rather odd, of course, but if one defines the

dual of a cipher as interchanging the plainspace with the keyspace, then the dual of

Keeloq has a 64-bit plaintext, and a 32-bit key. The cipher is operating in precisely

counter-mode in that case, with a random initial counter, and fixed key of all zeroes.

However, not all automobiles use this method. See [234] [106] and [94].

For those interested, this is an example of a dual cipher. A cipher E ′ is dual to E

if and only if

E ′P(k) = Ek(P)

26 3 The Fixed-Point Attack

3.7.2 RPA vs KPA vs CPA

Because this attack will use a large portion of the codebook (from 10%–60% of

all possible plaintext-ciphertext pairs), it will be easy to see that random plaintexts

would permit the attack to proceed identically. The random plaintext attack model

(RPA) is between the more commonly discussed known plaintext attack (KPA) and

chosen plaintext attack (CPA) models. In the known plaintext case, the adversary is

given plaintext-ciphertext pairs, and must find the secret key. In the random plain-

text model, the adversary can further be assured that those plaintexts were generated

randomly—much like the distinction between average-case and worse-case running

time in quicksort. In the chosen plaintext case, the attacker actually choses the plain-

texts according to properties that he/she wishes to exploit. This distinction is not

important here, but could be elsewhere.

3.8 Wagner’s Attack

Again, in this attack (first published in [84]), we will iterate over some portion

of the code-book. One property of the cipher Keeloq, is that only one bit is changed

per round. Thus the last sixteen rounds, represented by gk(x), only affect sixteen

bits of the ciphertext. Thus, if x is a fixed point of f
(8)
k , then 16 out of the 32 bits

will match, compared between the plaintext and the ciphertext. To be precise, 16

bits will be different, and 16 will match though be shifted by 16 positions. One can

easily scan a code-book for this property.

This matching property will always occur for a fixed point of f
(8)
k , but it also

happens by coincidence with probability 2−16, between two random words. There-

fore, the number of code-book entries with this property will be the number of fixed

points of f
(8)
k , plus an expected 2−16232 = 216 “red herrings”. As you can see, the

“red herrings” out number the true fixed points of f
(8)
k by a large margin.

If the effect is not a “red herring” for a particular code-book entry (in other words,

the plaintext really is a fixed point of f
(8)
k) then there is an easy algorithm for find-

ing the 16 key bits. Simply repeatedly apply the following formula, which can be

calculated because ciphertext is the last few L’s, and the plaintext itself, being a

fixed point, is known to be what is in the linear shift register at the end of round

512. More precisely, the ciphertext C0, . . . ,C31 is L528, . . . ,L559 and the plaintext

P0, . . . ,P31 (because1 we have a fixed point) is L512, . . . ,L543. The formula to apply

is

ki−32 = Li +Li−32 +Li−16 +NLF(Li−1,Li−6,Li−12,Li−23,Li−30)

1 Here the sharing of 16 bits among the plaintext and the ciphertext of a fixed-point of f (8) is

rendered explicitly obvious because L528, . . . ,L543 appear in both the range given by the P’s and

the range given by the C’s.

3.8 Wagner’s Attack 27

where NLF was defined in Section 2.3 on Page 11. Therefore, each code-book entry

with the matching property can be tagged with a 16-bit potential sub-key. Of course,

for the 216 red-herrings, the sub-key will be unpredictable. But, for each of the

genuine fixed-points, it will be correct!

As it turns out, the 16-bit sub-key, as well as any single plaintext-ciphertext pair

that is a fixed point of fk, not merely of f
(8)
k , is enough to mount an algebraic attack.

Thus we have the following steps. Let c3 denote the number of fixed points of f (8).

1. Check all 232 code-book entries for the matching property.

2. Of these (roughly 216 +c3) plaintext-ciphertext pairs, compute the sub-key that

they imply. Recall, c3 is the number of fixed points of f (8).

3. For each plaintext-ciphertext pair with the property, set up an algebraic crypt-

analysis problem with the one pair, assuming it is a fixed point of f , and assum-

ing the sub-key is correct.

4. If an answer is obtained, verify assumptions. If assumptions turned out to be

false, or if the problem is “unsatisfiable”, go to Step 3.

Sorting upon this sub-key between Step 2 and Step 3 would reveal which are

the likely pairs, as the same sub-key will tag all the fixed points of fk and f
(8)
k .

We expect each of the 216 “red-herrings” to be tagged with uniformly randomly

distributed potential sub-keys. Therefore, in the first few Step 3 & 4 executions, we

would obtain the key.

What is needed for success? First, that fk have at least one genuine fixed point.

This occurs with probability 1− 1/e, as proven in Corollary 11, and is roughly

0.6321. Second, the expected amount of work in Step 1 is at most 232 Keeloq En-

cryptions, and a more precise estimate is found in [84]. Third, Step 2 is negligible.

Fourth, for Step 3 and Step 4, we must execute these stages for each potential sub-

key. Given the model of the previous attack, and using Theorem 1, we can obtain a

bound on the expected number of repetitions of Steps 3 and 4. This is upper-bounded

by the expected value of c1 + 8c2 given that c1 > 0. Using MAPLE [3], this comes

to 113/2− 46/e ≈ 39.58, the difference being that we now allow c1 = 1, which

was previously forbidden. Of course, without the sorting explained in the previous

paragraph, the expected number of Step 3 and Step 4 executions would be around

215. For certain, the longest step is Step 1, iterating over the code-book.

3.8.1 Later Work on Keeloq

The author’s attack was done in January of 2007, and between that time and

the time of the writting of this book, several other attacks on Keeloq have been pub-

lished, including some by the author of this book. They are found in the bibliography

under the following entries, which we list in no particular order:

Three things are noteworthy about this list. First, it is remarkably long consid-

ering that it covers papers about a cipher which was first broken in 2007. Second,

this shows the remarkable importance of Keeloq in the evolution of cryptanalysis

28 3 The Fixed-Point Attack

as an academic discipline. Third, the fact that some extremely prestigious names

are in the author list, such as Eli Biham, Bart Preneel, and Nicolas Courtois, sig-

nify that cryptanalysis is indeed a mainstream and legitimate branch of academic

cryptography—a statement that few would have made 10–15 years ago. Last, the

author has included some relatively non-traditional sources, including blogs. The

reason for this is that blogs are often extremely expository, and therefore can be a

good starting place for someone first learning about a new topic.

• “Cryptanalysis of the Keeloq block cipher” by Andrey Bogdanov [50], published

as an e-print.

• “Algebraic and Slide Attacks on Keeloq” by Nicolas Courtois, Gregory Bard,

and David Wagner [84], published in the proceedings of FSE’08.

• “Attacks on the Keeloq Block Cipher and Authentication Systems” by Andrey

Bogdanov [49], published in the proceedings of RFIDSec’07.

• “Code Hopping Decoder using a PIC16C56” by S. Dawson, a manufacturer’s

technical report about keeloq [94], with a URL given in the bibliography.

• “Algebraic and Slide Attacks on Keeloq” by Nicolas Courtois and Gregory Bard

[74], published as an e-print.

• “Linear Slide Attacks on the Keeloq Block Cipher” by Andrey Bogdanov [51],

published in the proceedings of INSCRYPT’07.

• “How to Steal Cars” by Eli Biham, Orr Dunkelman, Sebastiaan Indesteege,

Nathan Keller, and Bart Preneel [47], a rump-sesssion talk at CRYPTO’08.

• “Periodic Ciphers with Small Blocks and Cryptanalysis of Keeloq” by Nicolas

Courtois, Gregory Bard, and Andrey Bogdanov [83], published in Tatra Moun-

tains Mathematical Publications, the mathematics journal of the Slovak Academy

of Sciences.

• “A Practical Attack on Keeloq” by Sebastiaan Indesteege, Nathan Keller, Orr

Dunkelman, Eli Biham, and Bart Preneel [142], published in EUROCRYPT’08.

• “Remote keyless entry system for cars and buildings is hacked; RUB security

experts discover major vulnerability; Access from a distance of 300 feet without

traces” by Christof Paar [184], published as a press-release, but URL given in the

bibliography.

• Chapter 2 of “Algorithms for the Solution of Linear and Polynomial Systems of

Equations over Finite Fields, with Applications to Cryptanalysis”, the author’s

dissertation [31].

• “Researchers Crack Keeloq Code for Car Keys”, by Kim Zetter [234], published

in WIRED magazine, but a URL is given in the bibliography.

• “On the Power of Power Analysis in the Real World: A Complete Break of

the Keeloq Code-Hopping Scheme” by Thomas Eisenbarth, Timo Kasper, Amir

Moradi, Christof Paar, Mahmoud Salmasizadeh, and Mohammad T. Manzuri

Shalmani [106], published in the proceedings of CRYPTO’08.

Chapter 4

Iterated Permutations

The purpose of this chapter is to allow us to calculate what fraction of permuta-

tions in Sn have a particular property φ , in the limit as n tends to infinity. This will

be accomplished via analytic combinatorics.

Combinatorics is the branch of mathematics concerned with counting objects.

The technique of using a function of a variable to count objects of various sizes,

using the properties of multiplication and addition of series as an aid, is accredited

to Pierre-Simon Laplace [116, Ch. “Invit.”].

Consider the following problem. We have boxes that can be filled with 1, 2, 3, or

4 items, among an identical set of 5000 indistinguishable items. How many different

ways are there to dispose of the items? Note that we can use as many as 5000 boxes,

or as few as 1250 boxes. Using the methods of this chapter, we will address precisely

this question in Section 4.2.4.3 on Page 35.

An ordinary generating series associated with a set of objects assigns as the co-

efficient of the zith term, the number of objects of size i. An exponential generating

series is merely this, with each term divided by i!. In particular, this can be used to

describe permutations drawn at random from Sn, which is what concerns us here.

In combinatorial arguments, OGFs and EGFs abound [116, Ch. “Invit.”] [200] and

are especially useful in counting partitions of sets. Here, we will use this family of

techniques, now called “analytic combinatorics” to count permutations of particular

types.

The content of this chapter is joint work with Prof Shaun Ault of Fordham Uni-

versity.

4.1 Applications to Cryptography

As we saw in Section 3.1.2 on Page 17, the cipher Keeloq can be written as

the eighth iterate of a permutation followed by one more permutation [31, Ch. 2].

This eighth power naturally affects the cycle structure; for example, we will prove

that the fixed points of the eighth power are those of order {1,2,4,8} under the

© Springer Science + Business Media, LLC 2009

29G.V. Bard, Algebraic Cryptanalysis, DOI: 10.1007/978-0-387-88757-9_4

30 4 Iterated Permutations

original. There are many other properties of these repeated permutations that follow

from the factorization of the number of iterations, and we will show cryptanalytic

consequences of several.

In particular, in the event a user is so unwise as to iterate a cipher a very large

number times, then we show, depending on the factorization of that number of times,

the number of fixed points of the cipher will change. In fact, this leads to a distin-

guisher attack if the number of iterations has a large number of divisors. Finally, we

show how to turn this into a key-recovery attack in the extremely unlikely scenario

that cipher is used as part of a super-encipherment.

The famous cryptanalyst Adi Shamir, the “S” in RSA, has stated that these prop-

erties of random permutations have been known primarily from the theory of ran-

dom graphs, and for a long time, but this is possibly their first application to crypt-

analysis [11].

4.2 Background

4.2.1 Combinatorial Classes

A combinatorial class C is a set of objects C together with a function ℓC : C→
Z≥0, which assigns to each element a non-negative integer “size”. For example, if

P is the set of permutation groups Sn for all positive integers n, then we may use

the size function ℓP(π) = n, for any π ∈ Sn, to make P into a combinatorial class.

Sometimes the size function is a matter of context, for example the size function for

matrices might be the dimension or the number of elements, depending on what is

being counted. An element c ∈ C is said to be maximal if there is no element d ∈ C

such that ℓC(d) > ℓC(c). Note, there might well be many maximal elements, all of

the same size.

Let Ci be the cardinality of the set of elements in C with size i. Thus in our

example, Pi = i! for i ≥ 0. It will be useful to represent Ci by either an exponential

or generating function an ordinary generating function (OGF or EGF). First, a brief

discussion of generating functions is in order.

4.2.2 Ordinary and Exponential Generating Functions

Given a set of constants indexed by Z≥0, say c0,c1,c2, . . ., the ordinary generat-

ing function (or OGF) is defined as the formal power series:

C (z)
de f
=

∞

∑
i=0

ciz
i = c0 + c1z+ c2z2 + c3z3 + · · · .

The EGF is defined as the formal power series:

4.2 Background 31

Ce(z)
de f
=

∞

∑
i=0

ci

i!
zi = c0 +

c1

1!
z+

c2

2!
z2 +

c3

3!
z3 + · · · .

and as you can see, the EGF is just the OGF term-wise divided by i!.

Sometimes the infinite sum that is presented is actually the Taylor Series of a

well-known elementary function. In that case, we will use that function as an ab-

breviation for the sequence. Also, it is clear that the OGF or EGF is a polynomial if

and only if the combinatorial class has a maximal element.

4.2.3 Operations on OGFs

In order to understand why OGFs and EGFs are useful, we must first see how

simple combinatorial operations on classes affect the OGFs. This, in a way, moti-

vated the original concept of an OGF.

4.2.3.1 Simple Sum

The description of the sum of two combinatorial classes can be broken into two

cases. The first case, which is very simple, occurs if the set of objects in the class

have empty intersection. The second case will be handled in Section 4.2.3.3 on

Page 32.

If this is the case, let A = B +C be defined as follows. The set of objects in A

is the union of the set of objects in B and C . The size of an object in a ∈A will be

determined as follows: if it is from B then let it be ℓB(a) and if it is from C then let

it be ℓC(a).
The number of objects of size n in A , or An, therefore is Bn +Cn. This means

that the OGF would be

(B0 +C0)+(B1 +C1)z+(B2 +C2)z
2 +(B3 +C3)z

3 + · · ·= B(z)+C (z)

4.2.3.2 Cartesian Product

Suppose you take two combinatorial classes B and C , and build a combinatorial

class A as follows. Each element of A shall be an ordered pair, with the first entry

coming from B and the second from C . The size of an element (b,c) will be

ℓA ((b,c)) = ℓB(b)+ ℓC (c)

This is called the Cartesian Product, because the set of objects of A will be the

Cartesian Product of the objects in B and those in C . Let Bi indicate the number of

objects in B that have size equal to i, and likewise Ci and Ai. At first it looks like

computing the OGF of A might be challenging, since, for example,

32 4 Iterated Permutations

A4 = B0C4 +B1C3 +B2C2 +B3C1 +B4C0

but observe the product of the OGFs produces the required result

(B0 +B1z+B2z2 +B3z3 + · · ·)(C0 +C1z+C2z2 +C3z3 + · · ·)
= (B0C0)+(B1C0 +B0C1)z+(B2C0 +B1C1 +B0C2)z

2 +

(B3C0 +B2C1 +B1C2 +B0C3)z
3 + · · ·

We will write this operation as B×C = A . Furthermore, we can abbreviate

B×B = B2, along with higher powers. As noted above, the OGF of a Cartesian

Product is the product of the OGFs. There is a similar interpretation for EGFs and

products of EGFs, called the labelled product, see Section 4.2.5.1 on Page 36. See

Section 4.4.2 or Theorem 15 as an example.

4.2.3.3 Sum with Non-Empty Intersection

When explaining the set theoretic operation of “disjoint union” to students, the

author once used the analogy of painting all the elements of B with red, and all the

elements of C with blue. Thus if the set of objects of B and C are not of empty

intersection, then each element of the intersection will appear twice, once in each

color. If we are asked the size of an element of B + C then the color indicates

whether we should use ℓB or ℓC.

The combinatorial way to achieve this painting is to make two combinatorial

classes both consisting of one object each, namely I1 with “◦” and I2 with “·”.

Both of these objects will have size 0, and thus the OGFs of I1 and I2 are both

1+0z+0z2 +0z3 · · ·= 1. Then consider (B×I1)+(C ×I2).
This will consist of ordered pairs, where either the first element is from B and

the second element is “◦” or the first element is from C and the second element

is “·”. Furthermore, all the lengths are unchanged. We have now used set theory to

paint the elements of B and C different colors.

This is what we mean by B + C when the set of objects in B and C are not

disjoint (i.e. they do not have empty intersection).

4.2.3.4 Semiring of Combinatorial Classes

With two trivial examples, we will be able to show ring-like structure for com-

binatorial classes. Let the empty class E be one with no objects, and so the

number of objects in E with size n is always 0. This means that the OGF is

0+0z+0z2 +0z3 + · · ·= 0.

Let the singleton class I be one with only one object, and let its size be 0. Thus

the number of objects in E with size n is always 0, except if n = 0, in which case it is

1. This means that the OGF is 1+0z+0z2 +0z3 + · · ·= 1. By convention, B0 = I ,

for all combinatorial classes B.

4.2 Background 33

We shall state, without proof, the following facts.

Sums are Closed: For any two combinatorial classes C and D we have that C +D

is a combinatorial class.

Sums are Associative: For any three combinatorial classes B, C , and D , it is the

case that B +(C +D) = (B +C)+D .

Sums have Identity: For any combinatorial class C it is the case that C =C +E =
E +C .

Sums are Commutative: For any two combinatorial classes C and D we have that

C +D = D +C .

Products are Closed: For any two combinatorial classes C and D we have that

C ×D is a combinatorial class.

Products are Associative: For any three combinatorial classes B, C , and D , it is

the case that B× (C ×D) = (B×C)×D .

Products have Identity: For any combinatorial class C it is the case that C = C ×
I = I ×C .

Products are Commutative: For any two combinatorial classes C and D we have

that C ×D = D×C .

The Distributive Law: For any three combinatorial classes B, C , and D , it is the

case that B× (C +D) = (B×C)+(B×D)

Of course, we have neglected to say what B = C means. These symbols indi-

cate an isomorphism of combinatorial classes. This means first that there is some

bijection between the objects in B and C (as sets). Call this φ . Second, we require

that for any b ∈B that ℓB(b) = ℓC(φ(b)). That is to say, any pair of objects identi-

fied as matched by φ to each other must have equal sizes. Clearly, this notion is an

equivalence relation.

Under the above equivalence relation, the only thing separating combinatorial

classes from being a commutative ring is the absence of additive inverses. This

structure is called a commutative semiring, a structure used elsewhere in this book

(see Section 6.2 on Page 81). The proofs are not interesting and so are omitted. But

it is pleasing that these laws hold, and we will make implicit use of them at times.

4.2.3.5 Sequences of Objects

An object in SEQ(B) is a finite sequence of objects from B, with the additional

artificial member that is a sequence of length zero (the empty sequence). The size of

an object in SEQ(B) is the sum of the sizes of the elements of B which compose it.

For example, L = SEQ(Z≥0) would be finite length sequences of positive integers.

The size of one of those would be the sum of those integers. Thus Ln is the number

of ways to write n as a sum of positive integers, but including ordering. We must

require that B have no element of size 0 for this construction to work. Furthermore,

it is clear that

SEQ(B) = I +B +B
2 +B

3 +B
4 + · · ·

and therefore if B has an OGF of B(z) then SEQ(B) will have an OGF of

34 4 Iterated Permutations

1+B +B
2 +B

3 +B
4 + · · ·= 1

1−B(z)

4.2.3.6 Other Operations

Flajolet and Sedgewick [116, Ch 1.2] have described several other operations,

which we will not require here. These include cycles (sequences that are considered

identical if a rotation-like shift will transform one into another), the power set, and

multisets (sequences where order does not matter).

4.2.4 Examples

Some examples might be useful for practice at this point.

4.2.4.1 Permutations in General

For our example combinatorial class, the permutations P , its OGF is P(z) =
z+2z2 +6z3 +24z4 +120z5 + · · ·, and its EGF is Pe(z) = z+z2 +z3 +z4 +z5 + · · ·=
z/(1− z). At times, we may wish to add S0, the unique permutation of the empty

set, which we state has size equal to zero.

4.2.4.2 The Non-Negative Integers

The series 1 + z + z2 + z3 + z4 + z5 + · · · = 1/(1− z) represents the OGF of the

non-negative integers, Z≥0 with “size” function being the identity: ℓ(n) = n. The

EGF is therefore 1+ z+ z2/2!+ z3/3!+ z4/4!+ z5/5!+ · · ·= ez.

The even integers would have OGF of 1+0z+z2 +0z3 +z4 +0z5 + · · ·. The EGF

is therefore 1+z2/2!+z4/4!+z6/6!+ · · ·= coshz. Likewise the odd integers would

have OGF of z+ z3/3!+ z5/5!+ · · ·= sinhz

And one can see that the sum law works, because the even non-negative integers

and odd non-negative integers are disjoint, and therefore can be summed simply,

and produce all the non-negative integers. Also, recall

sinhz+ coshz = ez

4.2 Background 35

4.2.4.3 Partitions into Boxes

Now we return to our motivating example. Our boxes could contain 1, 2, 3, or 4

objects. The size of such a box should be 1, 2, 3, or 4 accordingly, and there is one

such box of each size. Therefore, the OGF of the combinatorial class of boxes B

would be

B(z) = 0+ z+ z2 + z3 + z4 +0z5 +0z6 + · · ·
and we can use the sequence operation to represent an arbitrarily long sequence of

boxes from B. Then we have the OGF

SEQ(B)(z) =
1

1− z− z2− z3− z4

and the 5000th degree term of the Taylor Series of that function would be the number

of ways to produce a sequence of boxes that collectively contain a total of exactly

5000 objects.

This simple problem can be generalized tremendously. For example, let A1, A2,

. . . , Ak be sets of whole numbers. The number of all distinct ways that n identical

objects can be placed into k containers, where container j must have some number

of objects that occurs in the set A j will be the coefficient of zn in the OGF:

(

∑
i∈A1

zi

)(

∑
i∈A2

zi

)

· · ·
(

∑
i∈Ak

zi

)

,

a function that we will use in the proof of Lemma 6. Notice that the jth factor in the

entire product is the OGF that represents the set A j.

4.2.4.4 Cycles

A less trivial example of a combinatorial class is the class O of n-cycles of Sn, for

all n > 0, with size function ℓ(π) = n if π ∈ Sn. In other words, size n members of

O comprise the subset of permutations of Sn where the permutation has exactly one

orbit. For any n > 0 there are n!/n or (n−1)! of these. Thus the OGF is z+z2 +2z3 +
6z4 +24z5 +120z6 + · · · , and the EGF is z+ z2/2+ z3/3+ z4/4+ z5/5+ z6/6+ · · ·.
Thus the probability that a random permutation from Sn has only one cycle is given

by the coefficients of the zn terms in the EGF. Namely, (n−1)!/n! = 1/n.

The EGF for O also converges:

z+
z2

2
+

z3

3
+

z4

4
+

z5

5
+

z6

6
+ · · ·= log

(
1

1− z

)

as can be verified by term-by-term integration of the power series for 1
1−z

.

36 4 Iterated Permutations

4.2.4.5 Morse Code

The alphabet of Morse Code has two symbols: “dot” and “dash”. Let the size

of “dot” be 1 and the size of “dash” be 2. Then the OGF is M(z) = z + z2. The set

of Morse Code words is the set of all sequences of dots and dashes. This will have

OGF of 1/(1−M(z)). That function has Taylor Series

1

1− z− z2
= 1+z+2z2 +3z3 +5z4 +8z5 +13z6 +21z7 +34z8 +55z9 +89z10 +144z11 +· · ·

which is clearly Fibonacci’s series.

4.2.4.6 Zig-Zag Arrangement

Consider an arrangement of {1,2,3, . . . ,n} that is written as one list, such that the

first element gets mapped to one higher than itself, which gets mapped to one lower

than itself, which gets mapped to one higher than itself, et cetera. For example,

(3,4,1,5,2) would qualify, where as (2,3,4,1,5) would not. Furthermore, let us

require n to be always odd, and let the size of a zig-zag arrangement be n.

The number of arrangements of this type can be counted by computer and has an

OGF which begins

0+z+0z2 +2z3 +0z4 +16z5 +0z6 +272z7 +0z8 +7936z9 +0z10 +353792z11 + · · ·

which does not appear to be familiar at first glance, at least to the author.

However, the corresponding EGF is actually tanz. Using the definition of a zigzag

arrangement, Flajolet and Sedgewick [116, Ch. “Invit”] prove this result, by using

an integro-differential equation! However, they accredit the result to Désiré André,

published in 1881.

4.2.5 Operations on EGFs

Now that we have some examples, and have seen how the OGF reacts to certain

operations, we (perhaps) understand the motivation for the definition of an OGF.

However, the motivation for the definition of an EGF might seem less clear. The

“labelled product” operation will shed more light, as will the connection with prob-

ability.

4.2.5.1 The Labelled Product

Every permutation can be written as a product of disjoint cycles [101, Ch. 1.3 and

Ch. 4.1]. We later will make use of this form, including the number of the cycles,

4.2 Background 37

which we call the cycle count. We have already examined, in the form of O , the set

of permutations of cycle length one. We call such a permutation a “uni-cycle”.

What about cycle count of two? We call these “bi-cycles”, or B. Naturally, a

permutation which is the product of two cycles is fully described by the two cycles

which comprise it. But, the Cartesian Product as described above is not sufficient.

In other words, we will now show that O×O 6= B.

Consider how we combine perhaps (1,3,2) and (1,3,4,2) to build a permutation

on seven letters. We begin with seven symbols, which to avoid confusion we will

call {a,b, . . . ,g}. Some subset of these three will be assigned to be governed by the

first cycle. The remaining four will be assigned to be governed by the second cycle.

There is still further murkiness. If we get, for example, {c,d,e} to be governed

by (1,3,2), then the assignment {(c = 1,d = 3,e = 2)} is absolutely indistinguish-

able from {(c = 3,d = 2,e = 1)} because these result in (c,d,e) and (e,c,d) which

are equal as members of S3. Yet, the assignment of {(c = 2,d = 3,e = 1)} results

in (e,d,c), which is not equal to the above. But on the other hand, it is equal to

{(c = 3,d = 2,e = 1)} being assigned to the very distinct cycle (1,2,3) from O . It

takes some work to see that once we know the subset of 3 out of the 7 letters as-

signed to the first cycle, that we need not count how to assign them. This is covered

in more detail in [116, Ch 2.2].

Thus making a bicycle on c letters requires first a cycle σx and a cycle σy both

from O such that ℓO(σx) = x, ℓO(σy) = y, and x + y = c. Then we choose either x

letters out of the c to be governed by σx, or equivalently y letters out of the c to be

governed by σy. Luckily these are the same because

(
c

x

)

=

(
c

c− x

)

=

(
c

y

)

Now suppose the coefficient of the zx term in the OGF of O is Ox and likewise of

the zy term is Oy. Then, for fixed values of x and y, we desire the coefficient of the

zx+y = zc term of the OGF of B to be

(
c

x

)

OxOy =
c!

x!y!
OxOy

and in general the cth term should be

x=c

∑
x=0

c!

x!(c− x)!
OxOc−x =

x=c

∑
x=0

(
c

x

)

OxOc−x

which we will now construct.

Multiply the EGF of O with itself. We claim that this is the EGF of B. Note

the zx term will be Ox/x! and the zc−x term will be Oc−x/(c− x)!, by definition.

Then, since the length of a two-cycle permutation is the sum of the lengths of its

two cycles, these two will contribute to the zc term of the product of the EGFs. We

get that this term will be

38 4 Iterated Permutations

x=c

∑
x=0

Oc−x

(c− x)!

Ox

x!
=

1

c!

x=c

∑
x=0

(
c

x

)

OxOc−x

and so the corresponding term of the OGF of B will be that times c! by definition,

giving the desired result.

This long and convoluted operation is called “the labelled product” and the EGF

of the labelled product is always the product of the EGFs, as described in [116, Ch.

2].

4.2.5.2 Random Permutations

In cryptography and other disciplines, we are often concerned with determining

whether or not a random permutation has some given property φ . We can calculate

then the OGF of the combinatorial class F of permutations with that property, and

divide term-wise with the same term from the OGF of P , the combinatorial class

of all permutations. But this is the same as the coefficients of the EGF of F .

Thus, if we calculate an EGF, and are interested in permutations from S8 for

example, then we simply read off the coefficient of the 8th degree term, and that

will be exactly the probability. This renders superfluous any experiments that one

might perform on random permutations to verify any assumptions on the probability

of a particular property, which is a relief to those concerned with even S16, where it

would be hard to generate enough random trials to cover a significant portion of of

the 16! possibilities. For further details, see the “note” on Page 43.

4.2.5.3 Asymptotic Probabilities

The above works for any specific size n, but first, it might be difficult to calculate,

and second we might want to know the limit of this probability as the size goes to

infinity. The following is much easier, and is found in [116, Ch. 1].

Theorem 3. Let F ⊂P be the combinatorial class of permutations with property

φ . Suppose further F has EGF equal to f (z). Then the limit (as n goes to infinity)

of the probability that a random permutation of size n has property φ is given by

p = lim
z→1−

(1− z) f (z)

provided that (1− z) f (z) is continuous from the left at z = 1.

Proof. Let the OGF of F be given by A0 + A1z + A2z2 + A3z3 + A4z4 + A5z5 + · · ·.
Consider the following function

gn(z) =
A0

0!
+ ∑

1≤i≤n

(
Ai

i!
− Ai−1

(i−1)!

)

zi,

4.2 Background 39

which when evaluated at z = 1, the sum telescopes,

=
A0

0!
+

(
A1

1!
− A0

0!

)

(1)+

(
A2

2!
− A1

1!

)

(1)2 + · · ·+
(

An

n!
− An−1

(n−1)!

)

(1)n =
An

n!
.

Thus gn(1) is the desired probability, for size n.

The limit g(z) = limn→∞ gn(z) = A0
0!

+ ∑i≥1

(
Ai
i!
− Ai−1

(i−1)!

)

zi does not necessarily

exist for all such series, but when it does, we have

g(z) = lim
n→∞

gn(z) = lim
n→∞

A0

0!
+

(
n

∑
i=1

Ai

i!
zi

)

−
(

n

∑
i=1

Ai−1

(i−1)!
zi

)

= lim
n→∞

(
n

∑
i=0

Ai

i!
zi

)

− z

(
n

∑
j=0

A j

j!
z j

)

= (1− z) lim
n→∞

(
n

∑
i=0

Ai

i!
zi

)

= (1− z) f (z)

Thus we have the following relation among limits

p = lim
n→∞

gn(1) = lim
n→∞

lim
z→1−

gn(z) = lim
z→1−

lim
n→∞

gn(z) = lim
z→1−

(1− z) f (z)

Note, we implicitly assumed that g(z) is continuous (from the left) near z = 1 in

order to reverse the order of the limits in the last step, but this will be the case in all

of our examples. ⊓⊔
Theorem 3 is exploited extensively in a paper by Marko R. Riedel dedicated to

random permutation statistics, but in a different context (see [200]).

4.2.6 Notation and Definitions

The somewhat unusual notation of exp(C) where C is a series, means precisely

substituting the entire series C for z into the Taylor expansion for ez = ∑i≥0 zi/i!,

similar to matrix exponentiation.

It is well-known that any permutation may be written uniquely as a product of

disjoint cycles, up to reordering of the cycles and cyclic reordering within each

cycle; indeed, for any given permutation π consisting of k disjoint cycles, having

cycle lengths c1, c2,c3, . . . ,ck, there are exactly k!c1c2c3 · · ·ck ways to reorder to

obtain an equivalent expression for π . Any counts we make of symmetric group

elements must take this fact into account. Note, we use the convention that if π has

a fixed-point, a, then the 1-cycle (a) is part of the expression for π as disjoint cycles.

In particular, the identity of Sn is written (1)(2)(3) · · ·(n). We use the term cycle-

count for the number of disjoint cycles (including all 1-cycles) in the expression of a

permutation. It shall be convenient to include in our analysis the unique permutation

40 4 Iterated Permutations

of no letters, which has by convention cycle-count 0. We may view this element as

the sole member of S0, the unique permutation of the empty set.

4.3 Strong and Weak Cycle Structure Theorems

Let A be a subset of the positive integers. We consider the class of permutations

that consist entirely of disjoint cycles of lengths in A, and denote this by P(A,Z≥0).

Furthermore, if B ⊆ Z≥0, we may consider the subclass P(A,B) ⊆P(A,Z≥0) con-

sisting of only those permutations whose cycle count is found in B. That is, any

permutation of cycle count not in B, or containing a cycle length not in A, are pro-

hibited. Note, that having a cycle-count of zero means that the permutation is S0,

the unique permutation of the empty set.

The following theorems were first proven (presumably) long ago but can be de-

rived from [116, Ch. 2.2] and also [200], and it is commonly noted that the tech-

nique in general was used by Laplace in the late 18th century. The nomenclature is

the author’s, and the proofs are due to Shaun Ault of Fordham University, on topics

suggested by Nicolas Courtois.

Theorem 4. The Strong Cycle Structure Theorem:

The combinatorial class P(A,B) has associated EGF, P
(A,B)
e (z) = β (α(z)),

where β (z) is the EGF associated to B and α(z) = ∑
i∈A

zi

i
.

However, we only need a weaker form in all but one case in this paper:

Theorem 5. The Weak Cycle Structure Theorem:

The combinatorial class P(A,Z≥0) has associated EGF, P
(A,Z≥0)
e (z)= exp(α(z)),

where α(z) is as above: α(z) = ∑
i∈A

zi

i

This is clearly a special case of the Strong Cycle Structure Theorem with

β (z) = 1 + z + z2/2! + z3/3! + z4/4! + · · · = ez (the EGF of Z≥0). Interestingly, if

A = Z+, then α(z) = z+z2/2+z3/3+z4/4+z5/5+ · · ·= log
(

1
1−z

)
, which provides

a verification of the theorem in this special case:

exp

(

log

(
1

1− z

))

=
1

1− z
= 1+ z+ z2 + z3 + z4 + · · · ,

which is the EGF for the combinatorial class P of all permutations (together with

the unique permutation on 0 letters), as expected.

Since the proof of the strong version is not fundamentally more difficult than the

weak version, we shall provide a proof of Theorem 4. While this has been proven

already in [116, Ch. 2.2], we feel that a more expository proof is appropriate in this

context. First, a lemma which proves the case B = {k}.

4.3 Strong and Weak Cycle Structure Theorems 41

Lemma 6. The combinatorial class P(A,{k}) has associated EGF,

P
(A,{k})
e (z) =

1

k!

(

∑
i∈A

zi

i

)k

.

Proof. Let A ⊆ Z+. For a given cycle-count, k, we must only include cycles of

lengths found in A. Begin with an OGF. If π ∈ Sn has k cycles, then its cycle struc-

ture defines a partition of n identical objects into k containers, where each container

cannot have any number of objects that does not occur as a member of A. The

OGF that generates this is
(

∑i∈A zi
)k

, as stated in Section 4.2.4.3. Now, we must

remember that those objects in the containers are not identical! Think of each cycle-

structure as being a template onto which we attach the labels 1,2,3,4, . . . ,n in some

order. A priori, this provides a factor of n! for each partition of n, and so the coeffi-

cient of zn in the above OGF should be multiplied by n!. The best way to accomplish

this is to simply consider our OGF as an EGF: In our OGF, if Cn is the coeffiecient

of zn, then as EGF, n!Cn is the coefficient of zn/n!. Now, for each disjoint cycle of

length i, there are i ways of cyclically permuting the labels, each giving rise to an

equivalent representaion of the same i-cycle. Thus, we have over-counted unless we

divide each term zi by i. Finally, each rearrangement of the k cycles among them-

selves gives rise to an equivalent expression for the permuation, so we must divide

by k!, and our EGF for permutations of cycle-count k with cycle-lengths in A now

has the required form, P
(A,{k})
e (z) = 1

k!

(

∑i∈A zi/i
)k

. ⊓⊔

The proof of Theorem 4 then follows easily:

Proof. Let A ⊆ Z+,B ⊆ Z≥0. Categorize all permutations in P by cycle-count.

Only permutations with cycle-counts k ∈ B will contribute to our total, so by

Lemma 6,

P
(A,B)
e (z) = ∑

k∈B

P
(A,{k})
e (z) = ∑

k∈B

1

k!

(

∑
i∈A

zi

i

)k

= ∑
k∈B

α(z)k

k!
= β (α(z)),

since ∑k∈B zk/k! is the EGF associated to B. The Weak Cycle Structure Theorem

then follows as an immediate corollary. ⊓⊔

4.3.1 Expected Values

While OGFs and EGFs are very useful for the study of a one-parameter family

of constants, A0,A1,A2,A3, . . ., we often wish to work with a two-parameter fam-

ily, {As,t}s,t≥0. This is accomplished using double generating functions. The double

OGF, A(y,z) of a two-parameter family of constants, {As,t} is defined to be the for-

mal sum:

42 4 Iterated Permutations

A(y,z) =
∞

∑
s=0

∞

∑
t=0

As,ty
szt ,

and the EGF Ae(y,z) is defined to be the formal sum:

Ae(y,z) =
∞

∑
s=0

∞

∑
t=0

As,t

(s+ t)!
yszt .

For our purposes in proving Theorem 7, we will be interested in a combinatorial

class of permutations categorized not only by the order of the symmetric group

Sn in which the permutation lies, but also by the number of fixed points that the

permutation possesses.

Theorem 7. Let F ⊂P be a combinatorial class of permutations with double EGF

a(y,z), where the coefficient of yszt/(s + t)! is the number of permutations π with

property φs such that π ∈ Ss+t . Then the limit (as n = s + t goes to infinity) of the

expected value of s such that a random permutation of size n satisfies φs is given by:

lim
z→1−

(1− z)ay(z,z)

provided (1− z)ay(z,z) is convergent and continuous from the left at z = 1.

Proof. Let a(y,z) = ∑s≥0 ∑t≥0 ysztAs,t/(s+ t)!. The coefficient of yszt is the proba-

bility that a random permutation of Ss+t has property φs, by construction. Consider

the partial derivative with respect to y:

ay(y,z) = ∑
s≥0

∑
t≥0

sAs,t

(s+ t)!
ys−1zt .

The probabilities are now multiplied by the corresponding value of s. Now, letting

y = z produces:

ay(z,z) = ∑
s≥0

∑
t≥0

sAs,t

(s+ t)!
zs+t−1 = ∑

n≥0

(

∑
s+t=n

sAs,t

n!

)

zn−1.

Thus, ay(z,z) is the OGF that computes the expected value of s such that a random

permutation of size n satisfies φs (shifted by one degree). Using the same technique

as in the proof of Thm 3, we find that

lim
z→1−

(1− z)ay(z,z) = lim
n→∞

(

∑
s+t=n

sAs,t

n!

)

.

⊓⊔

4.4 Corollaries 43

4.4 Corollaries

Corollary 8. The probability that a random permutation (in the limit as the size

grows to infinity) does not contain cycles of length k is given by e−1/k.

Proof. The set A of allowable cycle lengths is Z+−{k}, and so has EGF given by

artificially removing the term for k from the EGF of O:

z+
z2

2
+

z3

3
+ · · ·+ zk−1

k−1
+0+

zk+1

k +1
+

zk+2

k +2
+ · · ·= log

(
1

1− z

)

− zk

k
,

and thus by the Weak Cycle Structure Theorem, the combinatorial class in question

has EGF equal to

a(z) = exp

(

log

(
1

1− z

)

− zk

k

)

=
1

1− z
e−zk/k

Thus the probability of a random permutation (as the size tends toward infinity)

not having any cycles of length k is given by limz→1−(1− z)a(z) = e−1/k ⊓⊔

Note: On the Precision of these estimations:

This result means that p→ e−
1
k when N → ∞. What about when N = 232? We

can answer this question easily by observing that the Taylor expansion of the func-

tion a(z) is the EGF and therefore gives all the exact values of An/n!. For example

when k = 4 we computed the Taylor expansion of g(z) at order 201, where each

coefficient is a computed as a ratio of two large integers. This takes less than a sec-

ond with the computer algebra software MAPLE [3]. The results are surprisingly

precise: the difference between the A200/200! and the limit is less than 2−321. Thus

convergence is very fast and even for very small permutations (on 200 elements).

See also, Section 4.2.5.2 on Page 38.

Returning to the proving of corollaries, let us define PA = P(Z+−A,Z≥0) and find

its EGF.

Lemma 9. The EGF of PA is given by exp(f (z)), where

f (z) = ∑
i 6∈A

zi/i = log

(
1

1− z

)

−∑
i∈A

zi/i

Proof. Because PA = P(Z+−A,Z≥0) we can use the Weak Cycle Structure Theorem.

The EGF of the combinatorial class of cycles with size from the set Z+−A is given

by that of O (the class of all cycles) with the “forbidden lengths” artificially set to

zero, namely

44 4 Iterated Permutations

∑
i∈(Z+−A)

zi/i = ∑
0<i 6∈A

zi/i =

(

∑
i>0

zi

i

)

−
(

∑
i∈A

zi

i

)

= log

(
1

1− z

)

−∑
i∈A

zi/i

The correct answer follows. ⊓⊔

Corollary 10. Let A be a subset of the positive integers. The probability that a ran-

dom permutation (in the limit as the size grows to infinity) does not contain cycles

of length in A is:

∏
i∈A

e−1/i = e−∑i∈A 1/i

Proof. Using Lemma 9 we obtain an EGF of

exp

(

log

(
1

1− z

)

−∑
i∈A

zi/i

)

=
1

1− z
∏
i∈A

e−zi/i

then multiplying by (1−z) and taking the limit as z→ 1 gives the desired result. ⊓⊔

This offers confirmation of Corollary 8 when substituting A = {k}. A permuta-

tion with no fixed points is called a derangement. Using a similar strategy, we can

calculate the probability of a derangement.

Corollary 11. Let π be a permutation taken at random from Sn. The probability that

π is a derangement is 1/e in the limit as n→ ∞.

Proof. Just apply Corollary 10 to the case of P{1}. ⊓⊔

Suppose we wish to consider if a permutation has exactly t cycles of length from

a set C ⊂ Z+, in other words, all the other cycles are of length not found in C. In

that case, we can consider such a permutation π as a product of πA and πB such that

πA has only t cycles of length found in A, and nothing else, and πB has only cycles

of length not found in A. This is an example of a “labelled product” [116, Ch 2.2],

as discussed in Section 4.2.5.1 on Page 36. Recall, the EGF of a labelled product is

merely the product of the EGFs.

Theorem 12. Let π be a permutation taken at random from Sn. The probability that

π has c fixed points is 1/(c!e).

Proof. Consider π = πAπB, where πA consists of exactly c fixed points, and nothing

else, while πB is a derangement of the remaining n−c points. We must compute the

labelled product

f (z) = P
({1},{c})
e ×P

{1}
e

Thus, by the Strong and Weak Cycle Structure Theorems,

f (z) =
zc

c!
exp

(

log

(
1

1− z

)

− z

)

=
zc

(1− z)c!
e−z

4.4 Corollaries 45

An application of Thm 3 provides the result:

lim
z→1−

(1− z) f (z) = lim
z→1−

zc

c!
e−1 =

1

c!e

⊓⊔

4.4.1 On Cycles in Iterated Permutations

Theorem 13. Let π be a permutation in Sn. A point x is a fixed point for πk if and

only if x is a member of a cycle of length i in π , for some positive integer i dividing

k.

Proof. Write π in disjoint cycle notation, and then x appears in only one cycle

(hence the name “disjoint.”) Call this cycle ψ . Since all other cycles do not con-

tain x, then πm(x) = ψm(x) for all integers m. Of course, ψ is of order i in Sn, thus

ψ i = id, the identity element of Sn.

If x is in a cycle of length i then that means that i is the smallest positive integer

such that ψ i(x) = x. Write k = qi+ r with 0≤ r < i. Then

x = ψk(x) = ψr(ψ iq(x)) = ψr((ψ i)q(x)) = ψr(idq(x)) = ψr(id(x)) = ψr(x)

so ψr(x) = x but we said that i is the least positive integer such that ψ i(x) = x and

r < i. The only way this is possible is if r is not positive, i.e. it is zero. Thus k = qi

or i divides k.

The reverse assumes that i divides k so write iq = k then

ψk(x) = ψ iq(x) = (ψ i)q(x) = (id)q(x) = id(x) = x

⊓⊔

4.4.1.1 An Example

Before we continue, observe what happens to a cycle of π when evaluating π2.

First, if the cycle is of odd length,

(x1,x2, . . . ,x2c+1) 7→ (x1,x3,x5, . . . ,x2c+1,x2,x4,x6, . . . ,x2c)

but if the cycle is of even length,

(x1,x2, . . . ,x2c) 7→ (x1,x3,x5, . . . ,x2c−1)(x2,x4,x6,x8, . . . ,x2c)

One can rephrase Theorem 13 as follows:

46 4 Iterated Permutations

Corollary 14. Let π be a permutation from Sn. Let k be a positive integer, and let

the set of positive integer divisors of k be D. Then the set of fixed points of πk is

precisely the set of points under π in cycles of length found in D.

4.4.2 Limited Cycle Counts

Theorem 15. Let k be a positive integer, and π a permutation from Sn. The expected

number of fixed points of πk is τ(k), taken in the limit as n→ ∞. Note, τ(k) is the

number of positive integers dividing k.

Proof. We shall construct a double EGF, a(y,z), where the coefficient of yszt is the

probability that the kth power of a random permutation of Ss+t has s fixed points. Let

π be a permutation taken at random from Sn. A point x is a fixed point under πk if and

only if x is a member of a cycle of order dividing k under π , via Corollary 13. Note

also πk has exactly t fixed points if and only if π = πAπB, where πA ∈ St consists

only of cycles of length dividing k, and πB ∈ Sn−t consists only of cycles of length

not dividing k. Let Dk be the set of all positive divisors of k. The double EGF that

counts the number of such permutations πAπB will be given by the labelled product

P
(Dk,Z

≥0)
e (y) ·PDk

e (z). By the Weak Cycle Structure Theorem and Lemma 9, we

obtain:

a(y,z) = exp

(

∑
i|k

yi

i

)

exp

(

log

(
1

1− z

)

−∑
i|k

zi

i

)

= exp

(

log

(
1

1− z

))

exp

(

∑
i|k

yi

i
−∑

i|k

zi

i

)

=
1

1− z
exp

(

∑
i|k

yi− zi

i

)

.

Theorem 7 provides the correct expected value. First observe that

ay(y,z) =
1

1− z
exp

(

∑
i|k

yi− zi

i

)

∑
i|k

yi−1.

Then ay(z,z) = 1
1−z

exp(0)∑i|k zi−1. Finally,

lim
z→1−

(1− z)ay(z,z) = lim
z→1−

∑
i|k

zi−1 = ∑
i|k

1
de f
= τ(k).

⊓⊔

4.5 Of Pure Mathematical Interest 47

4.4.3 Monomial Counting

For the case of GF(2), it is easy to count how many monomials are possible,

of degree d among n variables. This is equal to
(

n
d

)
, because for each subset of the

variables, there is exactly 1 possible monomial.

However, for GF(8) just as an example, we know from Fermat’s “little” theorem

that x8 = x. (In general, in GF(q) we will have xq = x). Therefore, there is no reason

to distinguish between x9y and x2y, as these are equal for all field elements that could

be assigned to x and y. See Section 11.3.2 on Page 191 for details on this point.

How do we count the number of possible monomials of degree d, among n vari-

ables, over the field GF(q)? The answer is actually strikingly similar to the 5000

items placed in boxes that could contain 1, 2, 3, or 4 objects, that we studied in

Section 4.2.4.3 on Page 35.

Each monomial can have degree 0, 1, 2, . . . , up to q−1 on any particular variable.

Thus, each variable is a box that can contain 0, 1, . . . , q− 1 “degree points”. We

have precisely n such boxes, which will represent one variable each. Note, while the

items going into the boxes are indistinguishable, the boxes are not. This is because

in xixix j, the first xi is indistinguishable from the second, but not from the x j. Then,

all we need to do is multiply out the OGFs, and take the dth degree term.

Thus each box has OGF B(z) = 1+z+z2 +z3 + · · ·+zq and a sequence of length

n of them (a monomial) has OGF M (z) =
(
1+ z+ z2 + z3 + · · ·+ zq

)n
and finally,

we have

Theorem 16. Counting equivalent monomials as identical, over the field GF(q), we

have k monomials of degree d among n variables where k is the coefficient of the zd

term in
(
1+ z+ z2 + z3 + · · ·+ zq

)n

Of course, for ease of calculation, one can truncate the sum at zd instead of at zq

if d < q. This is because there is no monomial of degree 11 that contains x12
i , just as

an example. Truncating the series makes it easier to calculate.

Note, this formula appeared in [232], as Proposition 3.1, but without proof or

derivation, and using different notation.

4.5 Of Pure Mathematical Interest

The authors encountered the following interesting connections with some con-

cepts in number theory, but they turned out to be not needed in the body of the

book. We present them here for purely scholarly interest.

48 4 Iterated Permutations

4.5.1 The Sigma Divisor Function

Lemma 17. The sum ∑i|k 1/i = 1
k
σ(k) where both i and k are positive integers, and

where σ(k) is the divisor function (i.e. the sum of the positive integers which divide

k).

Proof.

∑
i|k

1/i =
k

k
∑
i|k

1/i =
1

k
∑
i|k

k/i =
1

k
∑
i|k

i
de f
=

1

k
σ(k)

⊓⊔

Corollary 18. Let π be a permutation taken at random from Sn. The probability that

πk is a derangement is e−σ(k)/k, in the limit as n→ ∞.

Proof. Let D be the set of positive integers dividing k. From Corollary 14, we know

that x is a fixed point of πk if and only if x is in a cycle of length found in D for

π . We will use Corollary 9, with A = D. We obtain the probability is e−∑i∈D 1/i, and

Lemma 17 gives the desired result. ⊓⊔

Note that substituting A = {1} into the above yields the same result as Corol-

lary 11.

4.5.2 The Zeta Function and Apéry’s Constant

Corollary 10 provides an amusing connection with Riemann’s zeta function. Re-

call, for complex s, the infinite series,

∑
n≥1

1/ns de f
= ζ (s)

defines the “zeta function” ζ (s), provided the series converges.

Corollary 19. The probability that a random permutation (in the limit as the size

grows to infinity) does not contain cycles of square length is:

e−∑i≥1 1/i2 = e−ζ (2) = e−π2/6 ≈ 0.19302529,

or roughly 1/5.

Corollary 20. The probability that a random permutation (in the limit as the size

grows to infinity) does not contain cycles of cube length is: e−ζ (3) ≈ 0.30057532

Note, ζ (3) is known as Apéry’s Constant [223] [18], and occurs in certain quan-

tum electrodynamical calculations, but is better known to mathematicians as being

the probability that any three integers chosen at random will have no common factor

dividing them all [227].

4.6 Highly Iterated Ciphers 49

4.5.3 Greatest Common Divisors and Cycle Length

Theorem 21. Let π be a permutation from Sn. If x is in a cycle of length ℓ under π ,

then x will be in a cycle of length ℓ/gcd(k, ℓ) under πk.

Proof. Consider a cycle (x1,x2, . . . ,xℓ) of a permutation π . In the group of integers

modulo ℓ under addition (denoted Zℓ) the element k is a generator if and only if k

is coprime to ℓ. Repeated evaluations of π send x1 to x2, x3, x4, . . . , xℓ, x1, x2, . . . ,

and repeated evaluations of πk send x1 to x1+k, x1+2k, x1+3k, x1+4k, . . . , where the

subscripts are taken as addition modulo ℓ. We can see that the subscripts are the

coset containing 1, of the subgroup generated by k in Zℓ

If k is coprime to ℓ, then this subgroup is the whole group, and thus there is only

one coset, the entire group of ℓ elements. Thus xi is in a cycle of length ℓ.

If k is not comprime to ℓ, then let the greatest common divisor of k and ℓ be g.

Surely k generates a subgroup of order ℓ/g, and the coset containing 1 must be the

same size as this subgroup, because all cosets are the same size. Thus, x1 is in a

cycle of length ℓ/gcd(ℓ,k).
Of course, we can rewrite this cycle ℓ ways, so that any of its elements is x1, by

shifting it one place each time we write it. Thus all xi in the cycle of π have the same

cycle length as x1 under πk. ⊓⊔

Corollary 22. Let π be a permutation from Sn, and let k, ℓ be positive integers with

gcd(k, ℓ) = g. If ψ is a cycle in the disjoint cycle decomposition of π , and has length

ℓ, then in the disjoint cycle decomposition of πk, it will be replaced by g cycles of

length ℓ/g.

Proof. Let x be an element not fixed by ψ . Obviously, there are ℓ such elements.

Using Theorem 21 we know that under πk, and thus ψk, that x will be in a cycle

of length ℓ/g. Since all the ℓ elements of the cycle have to have the same outcome,

then all ℓ of them are in cycles of length ℓ/g, see Theorem 13 on Page 45. Therefore,

there must be g such cycles in the decomposition of ψ .

Since the cycles making up the decomposition of π are disjoint, and since disjoint

cycles commute, then the decomposition of ψ as a permutation, and its decompo-

sition as a “factor” of π are identical, since no cancellation could possibly occur

among disjoint cycles. ⊓⊔

4.6 Highly Iterated Ciphers

Here we present two attacks, which while no where near practical feasibility,

present surprising results that the author did not anticipate.

50 4 Iterated Permutations

4.6.1 Distinguishing Iterated Ciphers

Suppose there were three naı̈ve cryptography students, who choose to use 3-

DES iterated1 roughly one million times, because they are told that this will slow

down a brute force attacker by a factor of one million. Alice will choose 1,000,000

iterations, Bob will choose 1,081,079 iterations and Charlie will choose 1,081,080

iterations. Intuitively, one would not expect these three choices to have significantly

different security consequences.

However, assuming that the 3-DES cipher for a random key behaves like a ran-

domly chosen permutation from S264 , these permutations will have

τ(1,000,000) = 49 τ(1,081,079) = 2 τ(1,081,080) = 256

fixed points which allows for the following distinguisher attack. It is noteworthy that

Charlie’s number is the lowest positive integer x to have τ(x) = 256, while Bob’s

number (only one less) is prime, and thus has τ(x−1) = 2. This enables the dramatic

difference in vulnerability to the attack.

In a distinguishing attack, the attacker is presented either with a cipher under a

random key, or with a random permutation from the set of those with the correct

domain. The attack will proceed as follows: Randomly iterate through 1/64 of the

plain-space. If a fixed point is found, guess that one is being given a user cipher. If

no fixed point is found, guess random.

In the case of Alice’s implementation, there will be an expected value of≈ 0.766

fixed points. In the case of Bob’s, 1/32 expected fixed points. In the case of Char-

lie’s, 4 expected fixed points. A random permutation would have 1/64 expected

fixed points. Thus, we can see that Charlie’s would be easily distinguishable from a

random permutation, but Bob’s much less so. Against Alice, the attack could defi-

nitely still be mounted but with an intermediate probability of success. To make this

notion precise, we require the probability distribution of the number of fixed points

of πk.

Theorem 23. Let π ∈ Sn be a permutation chosen at random, then the cth term of

the following EGF

exp

(

∑
i|k

yi−1

i

)

is the probability that πk has exactly c fixed points.

Proof. Consider the double EGF of Theorem 15, a(y,z) = 1
1−z

exp(∑i|k
yi−zi

i
). Re-

call, the coefficient of yszt is the probability that πk ∈ Ss+t has s fixed points. Now,

for any given s, we can find the probability that πk ∈ Sn has s fixed points (in the limit

1 Since the brute force attack is the optimal attack known at this time, it is perhaps not completely

unreasonable. The classic UNIX implementations encrypt with a variant of DES 25 times, for

example [120, Ch. 8].

4.6 Highly Iterated Ciphers 51

as n→∞), by evaluating limz→1−(1−z)a(y,z). The result is the EGF exp(∑i|k
yi−1

i
).
⊓⊔

However, the above requires us to have 256 terms inside of the exponentiation,

for there are 256 positive integers dividing 1,081,080, and we will need to know the

coefficient of the cth term for at least 1000 terms. Therefore, we are compelled to

leave this expansion as a challenge for the computer algebra community.

Meanwhile, we performed the following experiment. We generated 10,000 ran-

dom permutations π from S10,000 and raised π to the kth power for the values of k

listed. Then we calculated c, the number of fixed points of πk, and determined if a

search of the first 1/64th of the domain would reveal no fixed points. That probabil-

ity is given by

(1− c/n)n/64 ≈ e−c/64

and taking the arithmetic mean over all experiments, one obtains

No fixed points One or more

k = 1 0.985041 0.014959 Random

k = 1000000 0.797284 0.202716 Alice

k = 1081079 0.984409 0.015591 Bob

k = 1081080 0.418335 0.581665 Charlie

Perhaps this is unsurprising, as in the case of Charlie, we expect 256 fixed points,

and so it would be surprising if all of those were missing from a part of the domain

equal to 1/64th of the total domain in size. On the other hand, for Bob we expect

only 2 fixed points, and it is exceptional that we find one by accident.

Finally, we observe that if there is an equal probability of an adversary be-

ing presented with a random cipher from S264 or 3-DES in the key of one of our

three users, iterated to their exponent, then the success probability of the attacker

would be for Alice 59.39%, for Bob 50.03%, and for Charlie 78.34%. For exam-

ple (0.9850 · · ·)/2 +(0.5817 · · ·)/2 = 0.7834 · · · for Charlie. Note in each case, we

check only 264/64 = 258 plaintexts, and so this attack is 2112/258 = 254 times faster

than brute-force.

4.6.1.1 Repeating the Attack

Suppose we iterate the distinguishing attack an odd number of times, and take the

“majority vote” as a “best guess”. This is done in many human situations, perhaps

it will have an effect here?

In asymptotic cryptography there is a well-known result that if against a ci-

pher (parameterized by a security parameter k), there is some attack A which

succeeds with probability “non-negligibly different from one-half” then iterating

A polynomially-many times will raise that probability to any particular desired

value between 1/2 and 1 (e.g. 2/3 or 9/10). Here, the cryptic phrase “p(k) is non-

52 4 Iterated Permutations

negligibly different from one-half” means that there is some polynomial f (k) such

that 1/(p(k)− 1/2) < f (k) for k sufficiently large. An example of a p(k) that is

acceptable is 1/2 + 1/k and an example of one that is not acceptable is 1/2 + 2−k.

The concept of negligible functions is also used in Section 5.2.2.1 on Page 68.

And so, in the world of asymptotic cryptography, it is merely necessary to cal-

culate the success probability at the end of a distinguishing attack, and show that it

differs from 1/2 non-negligibly. Finally note “polynomially-many” times refers to k

as well, in that the number of repetitions is upper bounded by some polynomial in

terms of k.

In concrete security, it is very difficult to try to understand what the translation

of the above means. However, if we look at the success probability against Bob, for

the naı̈ve definition of “negligible”, we would say that the attack against his cipher

(50.03%) has negligibly different probability of success from 1/2; meanwhile, for

Charlie’s cipher, we would say that the success probability of the attack (78.34%)

indeed is negligibly different from 1/2. The following table shows how we can very

easily amplify the success probability against Charlie, but that this fails miserably

against Bob. As always, Alice’s cipher performs in between.

Executions 1 of 1 2 of 3 3 of 5 4 of 7 5 of 9

Alice 0.5939 · · · 0.6392 · · · 0.6719 · · · 0.6983 · · · 0.7205 · · ·
Bob 0.5003 · · · 0.5005 · · · 0.5006 · · · 0.5007 · · · 0.5008 · · ·
Charlie 0.7834 · · · 0.8795 · · · 0.9285 · · · 0.9562 · · · 0.9727 · · ·

Plainspace Used 1/64 3/64 5/64 7/64 9/64

4.6.1.2 A General Maxim:

The grand conclusion is that if a permutation must be iterated for some reason,

then it should be iterated a prime number of times, to avoid fixed points.

4.6.2 A Key Recovery Attack

Consider the cipher given by

Fk1,k2
(p) = Ek1

(E
(n)
k2

(Ek1
(p))) = c

where k1 and k2 are keys, and Ek(p) = c is encryption with a block cipher (let

Dk(c) = p denote decryption). If E is DES and n = 1, then this is the “triple DES”

construction. Here, we consider that E is AES-256 as an example, and n is Charlie’s

number, 1081080. Then F is a block cipher with 512-bit key and 128-bit plaintext

block. We will refer to k1 as the outer key, and k2 as the inner key.

4.6 Highly Iterated Ciphers 53

Suppose an attacker had an oracle for F that correctly encrypts with the cor-

rect k1 and k2 that the target is using. Call this oracle φ(p). Observe that Gk3
(x) =

Dk3
(φ(Dk3

(x))) will have Gk3
(x) = E

(n)
k2

(x) if and only if k3 = k1. Thus if we can

correctly guess the outer key, we have an oracle for the nth iteration of encryption

under the inner key. If k3 6= k1, then provided that Ek1
is computationally indistin-

guishable from a random permutation from S2128 when k1 is chosen uniformly at

random (a standard assumption) then Gk3
(x) also behaves as a random permutation.

Thus, for k1 = k3, we can expect Gk3
(x) to behave like Charlie’s cipher in the

previous section, and for k1 6= k3, we can expect Gk3
(x) to behave like a random

permutation in the previous section.

Let one execution of the distinguishing attack signify guessing all possible k3

values, and executing the previous section’s attack for each key. If “random” is

indicated (i.e. no fixed point found), then we reject the k3 but if “real” is indicated

(i.e. at least one fixed point found), then we add k3 to a “candidate list.”

After one run of this distinguishing attack, we would have a candidate list of

outer keys of expected size

(0.014959)(2256−1)+(0.581665)(1)

where the success probabilities are given in the previous section, for the attack on

Charlie. Note, we are using no majority voting scheme, because the majority voting

schemes of the previous section have too many false positives (see Section 4.6.1.1

on Page 51).

If we repeat the distinguisher attack on these candidate keys, taking care to use

a distinct set of plaintexts in our search, the success probabilities will be the same.

This non-overlapping property of the plaintext search could be enforced by selecting

the six highest-order bits of the plaintext to be the value of n. After n runs, we would

expect the list to contain

(0.014959)n(2256−1)+(0.581665)n(1)

candidate keys.

Of course, the true k3 = k1 key will be present with probability 0.581665n. Next,

for each key kc on the candidate list, we will check all possible 2256 values of k2

(denoted kx), via checking if

p = φ(Dkc
(D

(n)
kx

(Dkc
(p))))

which will be true if kx = k2 and kc = k1. This check should be made for roughly

4–6 plaintexts, to ensure that the match is not a coincidence. This necessity arises

from the fact that the cipher has a 512-bit key and 128-bit plaintext. We will be very

conservative, and select 6.

The number of encryptions required for the n runs is

(1081080+4)

(
2128

64

)(

2256 +(0.014959)(2256)+(0.014959)2(2256)

54 4 Iterated Permutations

+(0.014959)3(2256)+ · · ·+(0.014959)n(2256)
)

=

= (1081080+2)(2378)
1− (0.014959)n+1

1−0.014959

= 2398.06579···(1−0.014959n+1)

and for the second stage

(6)(2)(2+1081080)(2256)(0.014959n)(2256) = (2535.6290···)(0.014959n)

= 2535.6290−6.062842n

for a success probability of (0.581665)n.

Using MAPLE [3], we find that n = 23 is optimal, leaving a candidate list of

2116.555··· possible keys, and requiring 2398.41207··· encryptions, but with success

probability (0.581665)23 ≈ 2−17.98001···. A brute-force search of the 2512 possible

keys would have (6)(2)(1081082)2512 encryptions to perform, or 2535.629007···. Nat-

urally, if a success probability of 2−17.98001··· were desired, then only 2517.649··· en-

cryptions would be needed for that brute-force search.

Therefore this attack is 2119.237 times faster than brute-force search.

Chapter 5

Stream Ciphers

While Keeloq is an important cipher, used in industry and with an interesting set

of methods for its cryptanalysis, the author believes that some more examples might

be useful. Here, we present the ciphers Trivium and Bivium, as well as QUAD.

The purpose of this chapter is not only to exposit on how the ciphers presented

here can be or cannot be attacked. Instead, the main purpose is to share some in-

teresting ciphers and exposit on how those ciphers are converted into a system of

equations. This relationship between the cipher and the equations is not trivial. The

task of converting a cipher to equations, and doing so efficiently, is a major task in

algebraic cryptanalysis. Also, because QUAD is based on random systems of equa-

tions, it is an endless source of cryptanalytic examples. The Bivium and Trivium

equations are an excellent source for testing new techniques.

While great care has been taken to cite the work of others carefully, and note

who has done what, the author wishes to be rather clear that nothing contained in

this chapter whatsoever is his own idea, but rather taken from cited published papers,

and presented in a more pedagogical style.

5.1 The Stream Ciphers Bivium and Trivium

5.1.1 Background

In order to understand Bivium, what it is, what it is not, and why we should be

interested in it, it is necessary to present a large quantity of background.

5.1.1.1 What is a Stream Cipher?

A stream cipher has some kind of internal state that is being continually updated.

Suppose this is n bits, then we can write a function f : GF(2)n→GF(2)n that rep-

© Springer Science + Business Media, LLC 2009

G.V. Bard, Algebraic Cryptanalysis, DOI: 10.1007/978-0-387-88757-9_5 55

56 5 Stream Ciphers

resents this “state-update function.” Alternatively, it could be over some finite field

GF(q). At each cycle, some “filter function” takes this state, and outputs usually one

field element. QUAD, which is discussed below, is an exception, and will output sev-

eral, but this is usually not the case. Thus g is usually written GF(q)n→GF(q). So

for stream ciphers using GF(2), which is most of them, the output of g is a single

bit.

These field elements, outputted by the stream cipher as a “keystream” are added

to the plaintext, one symbol at a time. At the other end, they are subtracted. Of

course, over GF(2) these are the same operation. The internal state is initially some

setup-function of the secret key (shared between transmitter and receiver) and an

initialization vector. There will be more said on this in Section 5.1.1.4 on Page 59.

In summary, the entire operation can be represented

• xi← f (xi−1)
• ki← g(xi)
• ci = pi + ki

• Transmit ci

which is repeated for all pi in p1, p2, . . . , pℓ.

Historically, f represented a linear-feedback shift-register or some kind of non-

linear version of one. Today, essentially all stream ciphers are much more com-

plicated than that. In fact, they may be composed of several linear-feedback or

non-linear-feedback shift-registers, and it is crucial not to mistake their own state-

update functions for the state-update function of the entire cipher. Also historically,

g merely took the most-significant or least-significant bit of the internal state. This

was found to be unwise due to several examples of cryptanalysis.

Stream ciphers are often extremely fast, on the order of 2×–100× as fast as a

block cipher. They are also often designed to be implemented in hardware, with

remarkably small and efficient circuits. That makes them ideal for use in mobile

devices where large circuits drain the battery too fast, and where memory is limited.

For a historical text on stream ciphers (up-to-date when written) see [125].

5.1.1.2 What was eSTREAM?

Some stream ciphers of the 20th century had been successfully broken in its last

decade. Most notable among these was AS5/1, and in particular the paper “Real

Time Cryptanalysis of AS5/1 on a PC” by Alex Biryukov, Adi Shamir and David

Wagner [48]. The cipher AS5/1, at that time, was in use by approximately 130 mil-

lion European cell-phone users with GSM phones, according to that paper. Another

triumph was AS5/2, and in particular the paper “Instant Ciphertext-Only Cryptanal-

ysis of GSM Encrypted Communication” by Elad Barkan, Eli Biham, and Nathan

Keller [36], on the cipher AS5/2, also used with GSM phones.

Recognizing this state of affairs at that time, and that there was no stream cipher

which held the same magnitude of trust and confidence as, for example, the block

5.1 The Stream Ciphers Bivium and Trivium 57

Fig. 5.1 The Stream Cipher Trivium

ciphers AES or 3-DES, the European Union cryptographic organization ECRYPT

began the eSTREAM project.

A previous effort, the NESSIE project (New European Schemes for Signatures,

Integrity and Encryption), had a stream cipher search which failed at the same task.

Six stream-ciphers had been selected for NESSIE, and each one had a successful

cryptanalytic attack published against it [194, Ch II.B.3], and so none were adopted.

And so a call for stream ciphers was announced in November of 2004, and the eS-

TREAM competition began. In total, 34 stream ciphers were submitted. These were

divided into software-based and hardware-based. Only 7 ciphers were placed in the

eSTREAM “portfolio,” of which 4 are software-based and 3 are hardware-based.

One of those three is Trivium. It is an excellent example for algebraic cryptanalysis,

58 5 Stream Ciphers

particularly because it has yet to be broken (at least at the time this was written). If

the reader breaks Trivium, surely the method and approach would be highly inter-

esting.

5.1.1.3 What is Trivium?

The stream cipher Trivium was designed by Christophe De Cannière and Bart

Preneel [56]. Because only 7 of the 34 proposed stream ciphers in eSTREAM were

placed in the final “portfolio”, and of these 7, only 3 are hardware-based, Trivium is

worthy of our attention. Moreover, the design of Trivium is remarkably simple. The

algorithm for Trivium encryption is given as Algorithm 2 on Page 58.

Christophe De Cannière has graciously made the image1 in Figure 5.1 on Page 57

freely available for any one to use, reproduce or modify. It shows the relationship

between the three shift registers which are at the core of the stream cipher. My

own drawing, Figure 5.2 on Page 59, is somewhat less readable but includes more

details. The idea is that Bivium-A and Bivium itself (sometimes called Bivium-B)

are simpler versions of Trivium, and one can see that by looking at Figures 5.3

and 5.4 on Page 62, which are formed by removing elements of Trivium. So far

Bivium has been broken, as well as Bivium-A, but not Trivium (at least at the time

this was written, April of 2009).

INPUT: An initial condition of 93 bits X0, . . . ,X92, as well as 84 bits Y0, . . . ,Y83 and 111 bits

Z0, . . . ,Z110, for the NLFSRs, and N bits of plaintext p1, . . . , pN .

OUTPUT: Ciphertext of N bits c1, . . . ,cN .

1: for i = 1,2, . . . ,N do

1: (Generate new bit for register X): by← X65 +X92 +X90X91 +Y77

2: (Generate new bit for register Y): bz← Y68 +Y83 +Y81Y82 +Z86

3: (Generate new bit for register Z): bx← Z65 +Z110 +Z108Z109 +X68

4: (Generate the key bit): k← X65 +X92 +Y68 +Y83 +Z65 +Z110

5: (Encrypt the plaintext bit with the key bit): ci← pi + ki

6: (Shift the register X by 1): for j ∈ 92,91, . . . ,1 do X j ← X j−1

7: (Put the new bit into X): X0← bx

8: (Shift the register Y by 1): for j ∈ 83,82, . . . ,1 do Y j ← Yj−1

9: (Put the new bit into Y): Y0← by

10: (Shift the register Z by 1): for j ∈ 110,82, . . . ,1 do Z j ← Z j−1

11: (Put the new bit into Z): Z0← bz

Algorithm 2: The Stream Cipher Trivium [De Cannière and Preneel]

1 http://www.ecrypt.eu.org/stream/ciphers/trivium/trivium.pdf

5.1 The Stream Ciphers Bivium and Trivium 59

Fig. 5.2 The Stream Cipher Trivium

5.1.1.4 Secret Key versus Initial State

Trivium has, as do all eSTREAM ciphers, an 80-bit secret key, and an 80-bit

“initialization vector”, for a total of 160-bits of initial information. However, the

state of the cipher is 288 bits. How does 160-bits of input “inflate” into a 288-bit

initial state?

This situation is remarkably common and not discussed in many books on cryp-

tography, so we will explain in detail here. One option could have been to simply

give the system an initial key of 288 bits, since the internal state is 288 bits. After

all, secret keys are to be kept entirely secret, be generated by means mathemati-

cally equivalent to fair coins, and so on. Surely that would result in a secure initial

condition.

However, actually generating random numbers is expensive and slow. Generat-

ing them badly is extremely unwise (e.g. the Venona Code (see [220])). Also, in

hardware situations, you do not want to rekey very often, because that is an expen-

sive operation. Often, sharing the secret key (for example between a cell phone and

the tower) involves RSA (see Section 10.1.1 on Page 160), or some other public-

key system. These are multi-step number-theoretic operations and certainly involve

much more computation than running the stream cipher itself.

Therefore, one takes a secret key of size decided to be sufficient for the security

of the data involved (80 bits). For other security objectives, an initialization vector is

provided (in this case it is also 80 bits) and then the 160-bit input is inflated into the

initial state. One use of initialization vectors is that two consecutive messages should

probably not be encrypted identically, but at the same time, rekeying after each mes-

sage might be extremely inconvenient. Thus, having the initialization vector avail-

able prevents rekeying too often, but also prevents two distinct messages from being

60 5 Stream Ciphers

encrypted identically. This was common practice among the military cryptologists

of WWII (e.g. the Nazi Enigma code), where the key would be changed daily, but

the cipher system would have a new initial setting for each message.

Some cryptanalysts compare their attack to the cost of brute-force guessing the

internal state (this would be both the secret key and the initialization vector for

Trivium or Bivium). However, the author, and many others, think that it makes more

sense to compare to the cost of brute-force guessing the secret key. This is because

some attack models assume that the initialization vector is known, others assume

it is selectable by the attacker, and those properties are not true of the secret key.

But other attack models assume that the initialization vector is secret, or perhaps

an incrementing counter with secret initial value. Overall, it is a stricter standard to

be faster than guessing merely the secret key, because it is shorter than the internal

state. Therefore, it is safe to apply the stricter standard to one’s own work, and leave

the debate to senior colleagues.

5.1.1.5 Initialization Stage in Trivium

The way that this is done in Trivium is that the shift-register X is preset to the

80-bit secret key, padded with 13 bits of zero to make 93 total bits. The shift-register

Y is preset to the 80-bit initialization vector, padded with 4 bits of zero to make 84

bits. The padding is done so that X0 is the first bit of the key and Y0 is the first bit

of the initialization vector, and X80 as well as Y80 are the first bits of the padding.

And the shift-register Z is preset to all zeroes, except the 3 most significant bits

Z108,Z109, and Z110 in our notation, are set to one. Then, after this preset, the system

is clocked 4×288 = 1152 times.

The last step, of clocking the system more than a thousand times, is very impor-

tant, and would be present even if there was a 288-bit secret key re-chosen every

message. The reason is that transmitting the “all-zero plaintext” or other types of

simple message might leak bits of the key into a form readily read by the attacker.

The idea is that kt+1152 is essentially uncorrelated to kt . This process of allowing the

cipher to run for a while before using its output is called an “initialization phase”,

“key setup phase”, or for historical reasons a “key schedule.”

5.1.1.6 Two Types of Attack

A key-recovery attack on Trivium/Bivium would try to discover the secret key,

based on plaintext-ciphertext pairs encrypted under that key. This means one must

have equations for the setup phase as well as for the encryption of those messages.

Consequently, there will be many equations, and one must solve them in time faster

than required to check all 280 possible keys in a brute-force key search.

Another type of attack—state recovery—is as follows. The cryptanalyst simply

takes the initial 288-bit state to play the role of the unknown that he/she is trying to

solve for. One ignores the setup phase. Nonethless, the attack must be faster than 280

5.1 The Stream Ciphers Bivium and Trivium 61

test encryptions, not 2288 encryptions, in order to be considered “faster-than-brute-

force.” If the attacker can recover the initial state at any time, then the message can

be read from that point forward.

To recover the secret key and initialization vector from the initial state might be

very difficult or impossible—a process called rewinding. This is in stark contrast to

Keeloq, which could be rewound. Of course, since Keeloq is a block cipher, there is

no key setup phase either.

Part of the irreversibility of the Trivium/Bivium family comes from the AND-

gate. Given a 1 at the output of an AND-gate, one knows that both inputs were a 1.

But given a 0 at the output of an AND-gate, it could be that the inputs were either

00, 01, or 10. This ambiguity is part of the irreversibility.

However, if the secret key is desired for special reasons (see Appendix A.3 on

Page 303), then it can be found. Once the internal state is solved for, in many cases

including Trivium, the operation of the cipher can be executed in reverse, and the

state at time 1152 rewound to t = 1151, t = 1150, . . . , t = 1. Then, the initial key and

IV will be known.

5.1.1.7 What is Bivium?

In the cryptanalysis of block ciphers, sometimes one has an attack that is not

faster than brute force, but can work successfully on “reduced” versions of the ci-

pher. For example, the author has a paper with Nicolas Courtois on performing an al-

gebraic cryptanalysis on 6 rounds of the Data Encryption Standard—a block cipher

with 16 rounds [76]. Attacks against fewer rounds than the total are an important

step toward advancing the techniques of cryptanalysis.

For stream ciphers, however, there is no obvious equivalent to simply reducing

the number of rounds. The stream cipher Bivium was created, by Hårvard Raddum

[196], to play that role for Trivium. Bivium has a design which is extremely similar

to Trivium. In fact, Bivium has two non-linear feedback shift-registers (NLFSRs),

while Trivium has three NLFSRs. In Bivium, they are of length 93 and 84, or 177

bits in total length. In Trivium, they are of length 93, 84, and 111, or 288 bits in total

length.

5.1.2 Bivium as Equations

Bivium can be specified in terms of the circuit diagram given in Figure 5.4 on

Page 62, but instead it can also be specified in terms of an algorithm, which is given

in Algorithm 3. Note that the key-setup phase was stated to be 4×177 = 708 clocks

instead of 1152 in Trivium.

The algorithm for Bivium encryption is given as Algorithm 3 on Page 63.

While Keeloq had only really one shift-register (as the key itself was simply

rotating), you can see from the diagram or the algorithm that Bivium has two shift

62 5 Stream Ciphers

Fig. 5.3 The Stream Cipher Bivium-A

Fig. 5.4 The Stream Cipher Bivium, sometimes called Bivium-B

registers. We will call these X and Y respectively, and they are of length 93 bits

and 84 bits. As before, the bits are numbered X0 for the leftmost, and X92 for the

rightmost, and Y0 through Y83, likewise.

The first cycle will be t = 1. At t = 200, suppose X40 is s. Then at t = 201 we

know X41 = s; at t = 202 we know X42 = s, and so forth. Therefore at time t we

know s = Xt−160, which is valid for 252≥ t ≥ 160. At t = 252, then s = X92 and the

bit “falls off” the left side of the shift register. The bit was inserted as the first bit of

the shift register X0 in time t = 160, which means it was calculated from the circuit

in t = 159.

5.1 The Stream Ciphers Bivium and Trivium 63

INPUT: An initial condition of 93 bits X0, . . . ,X92, as well as 84 bits Y0, . . . ,Y83, for the NLFSRs,

and N bits of plaintext p1, . . . , pN .

OUTPUT: Ciphertext of N bits c1, . . . ,cN .

1: for i = 1,2, . . . ,N do

1: (Generate new bit for register X): bx← X65 +X92 +X90X91 +Y77

2: (Generate new bit for register Y): by← X68 +Y83 +Y81Y82 +Y68

3: (Generate the key bit): k← X65 +X92 +Y68 +Y83

4: (Encrypt the plaintext bit with the key bit): ci← pi + ki

5: (Shift the register X by 1): for j ∈ 92,91, . . . ,1 do X j ← X j−1

6: (Put the new bit into X): X0← bx

7: (Shift the register Y by 1): for j ∈ 83,82, . . . ,1 do Y j ← Yj−1

8: (Put the new bit into Y): Y0← by

Algorithm 3: The Stream Cipher Bivium [Hårvard Raddum]

We will renumber the subscripts for convenience. Let Xi at time t be represented

by x92+t−i. Thus, in the previous paragraph s is actually x252. We can calculate that

xn will “fall off” the left side of the shift register at time t = n, because xn = X92

at that moment. Likewise, xn = X0 when t = n− 92, and so if n > 93 then xn was

calculated from the circuit at time t = n−93. Of course, x1 was bit X92 when t = 1

and x93 was bit X0 at that time.

Likewise, let Yi at time t be represented as y83+t−i. If n > 84, then yn was calcu-

lated from the circuit at time t = n− 84. Lastly, y1 was bit Y83 when t = 1 and y84

was bit Y0 at that time.

Therefore, the initial state of X , which is X0,X1, . . . ,X92 at t = 1, is recorded as

x93,x92, . . . ,x1 (note the reversal of ordering). Similarly, the initial state of Y , which

is Y0,Y1, . . . ,Y83 at t = 1, is recorded as y84,y83, . . . ,y1.

All xn for n > 93 are created by the circuit, given by the following formula:

bx← X68 +Y68 +Y83 +Y81Y82

so at time t this becomes

xt+93 = x24+t + y15+t + yt + yt+2yt+1

On the other hand,

by← Y77 +X65 +X92 +X90X91

so at time t this becomes

yt+84 = y15+t + x27+t + xt + xt+1xt+2

As you can see, we introduce two new variables per time-cycle. The key bit at

time t is given by X92 + X65 +Y68 +Y83. Since, for all stream ciphers, kt + pt = ct ,

we have

pt + ct = xt + x27+t + y15+t + yt

64 5 Stream Ciphers

and note that pt as well as ct are both known.

Thus for t cycles where we have both plaintext and ciphertext, we will write 3

equations, and add 2 new variables. The initial setting for X and Y represent 177

additional variables as well. It turns out [176] that 177 clock cycles is necessary and

sufficient. This yields 531 variables and 531 equations.

5.1.2.1 Features of these Equations

These equations have several features which make them noteworthy:

• They are of degree two.

• They have a very short length, consisting of only five terms for all three types.

This makes them ideal for the Raddum-Semaev method (see Section 12.10 on

Page 238).

• They are very sparse. With 531 variables, there are 141246 possible monomials,

and so the sparsity is β = 3.54× 10−5. This makes them very susceptible to

SAT-Solvers [176], see Chapter 13.

• There are very few quadratic terms. In absolute terms, only the bx and by equa-

tions have quadratic terms at all, and they have only one. The pi + ci equations

have none. In relative terms, one anticipates roughly 266 times as many quadratic

terms as linear, but in reality, there are roughly 0.154 quadratic terms per linear

term.

• The pattern of the equations is highly structured and predictable. Therefore, they

differ greatly from random.

Note that the equations ci + pi = xt + x27+t + y15+t + yt are what will use our

knowledge of the plaintext-ciphertext pairs. Suppose the last one is c f + p f . Then

x27+ f is the last value of f and y15+ f is the last value of y that we need. If we take the

equations as specified here, we would continue to x f +93 and y f +84. This means that

the least 66 equations of x and the last 69 equations of y will calculate information

that is never used. Thus we can delete these 135 equations, at considerable savings.

5.1.3 An Excellent Trick

The following example is given in Section 5.2 of [176]. The term s162 + s177

appeared in three of their equations. They replaced it with a dummy variable a, and

added an equation a = s162 + s177. This shortens the lengths of the sums, and so

dramatically shortens the clauses (see Section 13.4.1.1 on Page 249) and though it

introduces a new variable, it also drops the density of the system.

5.1 The Stream Ciphers Bivium and Trivium 65

5.1.4 Bivium-A

The two wires which are designated in the diagram with dotted lines are removed

to convert Bivium-B into Bivium-A, which is far less secure. It is surprising that

merely “cutting” two wires could have this effect. See Figure 5.3 on Page 62. The

change to the algorithm is extremely simple, in that the line

k← X65 +X92 +Y68 +Y83

should become instead

k← Y68 +Y83

and the change to our equations only affects the following:

pt + ct = y15+t + yt

but recall that pt and ct are known. The effect is rather dramatic.

Bivium-A was broken in 21 seconds by [176] and about a day by [196]. Mean-

while, Bivium-B is estimated to take 256 and 252 bit operations respectively, by those

authors.

5.1.5 A Notational Issue

Beware that in the papers under discussion, McDonald, Charnes and Pieprzyk

as well as Raddum use a different bit numbering for the internal state. They de-

note X0,X1, . . . ,X92 as s1,s2, . . . ,s93, as well as Y0,Y1, . . . ,Y83 by by s94,s95, . . . ,s177.

Likewise, for Trivium, they denote Z0,Z1, . . . ,Z110 as s178,s179, . . . ,s288. But the two

or three shift-registers are distinct, and so it is not clear why this was done. In the

interest of pedagogy, we renumbered.

5.1.6 For Further Reading

For further reading, the following may be useful

• “Trivium: A Stream Cipher Construction Inspired by Block Cipher Design Prin-

ciples” by Christophe De Cannière [56], published at ISC’06.

• “Cube Attacks on Tweakable Black Box Polynomials”, by Itai Dinur and Adi

Shamir [98], published at EUROCRYPT’09.

• “Breaking One.Fivium by AIDA an Algebraic IV Differential attack” by M. Viel-

haber [218], published as an e-print.

• “Differential Fault Analysis of Trivium” by Michal Hojsı́k and Bohuslav Rudolf

[139], published in the proceedings of FSE’08.

66 5 Stream Ciphers

• “An Algebraic Analysis of Trivium Ciphers based on the Boolean Satisfiability

Problem”, by Cameron McDonald, Chris Charnes, and Josef Pieprzyk [176].

• “Floating Fault Analysis of Trivium” by Michal Hojsı́k and Bohuslav Rudolf

[140], published in the proceedings of INDOCRYPT’08.

• “Two Trivial Attacks on Trivium”, by Alexander Maximov and Alex Biryukov

[175], published at Selected Areas of Cryptography in 2007.

• “Slid Pairs in Salsa20 and Trivium”, by Deike Priemuth-Schmid and Alex

Biryukov [195], and a response to it “Response to Slid Pairs in Salsa20 and Triv-

ium” by Daniel Bernstein [44].

• “Cryptanalytic Results on Trivium”, by Hårvard Raddum [196], published as an

eSTREAM techincal report.

• “Attacking Bivium with SAT-Solvers”, by Tobias Eibach, Enrico Pilz and Gunnar

Völkel [105], published in the proceedings of the 2008 SAT-Solver conference.

5.2 The Stream Cipher QUAD

QUAD is not a stream cipher per se but a family of stream ciphers, parameterized

by a positive integers m,n, and a finite field GF(q). The designers of QUAD, Côme

Berbain, Henri Gilbert, and Jacques Patarin, stated designing a relatively efficient

stream cipher with provable security as their goal [42]. The heart of QUAD is a

random system of m polynomials, of degree 2, in n < m unknowns. It is a stream

cipher with internal state being a sequence of n field elements, and outputting m−n

keystream field elements per cycle. This is unusual, in that most stream ciphers

output one keystream bit per cycle for GF(2), or one field element if over larger

finite fields.

The stream cipher is unique in that there is a proof of security. What this means

is that asymptotically, an adversary who can break a version of QUAD at certain

settings (in the sense of distinguishing it from a random generator) can solve the

NP-Complete problem MQ for other settings. Since MQ is NP-Complete (see Sec-

tion 11.5 on Page 199), this is not believed to be possible for “sufficiently large”

problems. However, we will see that this has little practical impact for the recom-

mended parameter choices.

5.2.1 How QUAD Works

Let the internal state then be x = (x1,x2, . . . ,xn), where each xi is a field element

from the finite field in question GF(q). Each of the m polynomials can be evaluated

for a particular value of x, and so we can call the polynomials f1, f2, . . . , fm, and

think of them as functions. Then

x← (x1,x2, . . . ,xn) = (f1(x), f2(x), . . . , fn(x))

5.2 The Stream Cipher QUAD 67

k← (k1,x2, . . . ,km−n) = (fn+1(x), fn+2(x), . . . , fm(x))

represents one cycle. In other words, each of the m polynomials is evaluated at x,

giving m field elements. The first n of these become the new x, and the remaining

m−n are outputted as m−n keystream field elements.

Another way to look at it is that f1, f2, . . . , fn taken together make a map

GF(q)n → GF(q)n, and this is the state update function. The filter function is

GFqn→GF(q)m−n given by the remaining m−n polynomials fn+1, fn+2, . . . , fm.

The creators of QUAD suggest, for example, n = 160 and m = 320, over GF(2)
[42]. They recommend that the polynomials be dense, but leave open the option

for future research into sparse polynomials to make faster versions of the cipher,

provided that they can also be proven secure. So far, only the GF(2)-and-dense case

has been proven.

As in Bivium and Trivium, there is also a “key setup” or initialization process

(see Section 5.1.1.4 on Page 59). The cipher has a key and an initialization vector,

which are combined in a complex process to produce the initial internal state. After

that point, the cipher operates as above. We do not attack the initialization process

here, and so we omit its description.

5.2.2 Proof of Security

5.2.2.1 Computationally Indistinguishable

First, we must define what it means for a set A to be computationally indistin-

guishable from a set B. The notion of “computationally indistinguishable” is some-

what confusing. Essentially it means that no polynomial-time algorithm can distin-

guish between an element drawn at random from set A from an element drawn at

random from set B, both of a size k, with sufficiently high success. It is the notion

of “sufficiently high” that will cause us some difficulty. If there was a fixed proba-

bility of an item from A versus B appearing, then we could talk of the probability of

correctness. However, there is a more general notion.

Let us say that the algorithm will output either “A” or “B”, and we will measure

the absolute value of the difference of the probability that the algorithm will output

“A” given that the object in question really is from A versus the probability that the

algorithm will output “A” given that the object in question really is from B. This

difference is called the “advantage” of the algorithm.

While it is not normal to do so, the language of combinatorial classes (see Sec-

tion 4.2.1 on Page 30) is useful here. The advantage of algorithm D shall be calcu-

lated as follows. Let Adv(D,k) = |pA,k− pB,k|, where pA,k is the probability that D

outputs “A” given that it is presented with an item drawn uniformly at random from

the set of objects in the combinatorial class A that have size equal to k. Likewise,

pB,k is the same, but the object is drawn from B. Now, either Adv(D,k) is negligible

or non-negligible compared to k.

68 5 Stream Ciphers

Definition 24. We write that f (k) is negligible compared to k if there does not exist

a polynomial p(k) such that 1/ f (k)≤ p(k) for all k sufficiently large.

An example of an f (k) that is negligible is 2−k and one that is not negligible is

k−2. The concept of negligible functions is also used in Section 4.6.1.1 on Page 52. If

for all polynomial time algorithms D we have that Adv(D,k) is negligible compared

to k then the sets A and B are computationally indistinguishable.

5.2.2.2 The Objective

A pseudorandom generator g is a family of functions, indexed by k, such that

gk : Fk → Fmk , with mk > k, with the following further property. The set given by

gk(x) for all x ∈ Fk should be computationally indistinguishable from the set Fmk .

In other words, the image of g, for any k, lives inside of Fmk . This subset, formed

by applying g to every possible input from the strictly smaller set Fk, should be

computationally indistinguishable from the whole of Fmk .

A pseudorandom generator should not be considered a pseudorandom function,

but all pseudorandom functions (with range larger than their domain) are pseudo-

random generators. The distinction is that the input to a pseudorandom function can

be chosen by the distinguishing algorithm, but the distinguishing algorithm against

a pseudorandom generator must consider only the case of the inputs to the function

being generated uniformly at random over the entire set of possible inputs.

As it turns out, QUAD is not the first stream cipher family for which an attempt

has been made to prove pseudorandom generator status. In fact, [42] lists several

previous attempts at the end of Section 1. But, QUAD is special for several reasons.

First, the proof is based on a universally agreed upon hard problem, that of solving

a quadratic system of equations over a finite field (particularly GF(2)). Second, the

stream cipher is fairly efficient for certain parameter settings.

Unfortunately, the statement of status as a pseudorandom generator essentially

only promises that security exists for security parameter choices above a certain

threshold, and it is by no means easy to figure out what those settings should be.

Furthermore, [232] shows that the recommended settings are not secure. Moreover,

this then requires the user to select larger settings, and this adverse affects the per-

formance of the stream cipher. Even with the recommended settings, the authors of

QUAD [42] note that QUAD is very significantly slower than the AES. Finally, a

proof over fields other than GF(2) was not attempted (though it might be proven

between the time of writing and the moment that the reader reads this).

5.2.2.3 The Underlying Hard Problem: A Pre-Image Finder

The underlying hard problems are MQD and MQ. The MQ problem is as fol-

lows. Given a quadratic system of equations over GF(2), can one find a solution (a

setting for each variable that makes each polynomial equation true). The decision

problem MQD is related, where one must merely state if a solution exists or not. We

5.2 The Stream Cipher QUAD 69

will prove the MQD problem NP-Complete in Section 11.5 on Page 199 and also

the MQ problem NP-hard in the same section. Note the connection with the satisfi-

ability problems, which merely substitute logical sentences for quadratic equations,

as discussed in Chapter 13.

The problem can also be seen as similar to a numerical analysis problem. Given

an m-dimensional vector b, and an m× n-dimensional matrix A, can one find an

n-dimensional vector x such that Ax = b, or certify that none exists. This is solving

a linear system of equations. Instead, if we replace the rows of A with quadratic,

rather than linear polynomials, we get a polynomial system of equations. Either can

be seen as a map from Fn→ Fm.

In the linear case, it is a problem solvable in time Θ(nmmin(m,n)) as shown

in Section 7.5.3 on Page 97. In the quadratic case, it is NP-hard, as shown in Sec-

tion 11.5 on Page 199 for GF(2).
Restricting to GF(2), for now, we can see that there is the interesting question

of the number of expected solutions. If m = n then we can expect probably 1 or 2

solutions. The number of solutions is either 2n−r+1, where r is the rank of matrix

A, or there are no solutions (see Corollary 28 on Page 88). The quantity n− r is

known as the “nullity”, and Table 9.3 on Page 145 lists common nullities for GF(2)-
matrices, along with their probabilities. If m > n by a significant margin, we expect

0 or 1 solutions.

However, many times, including testing system solving software (see Sec-

tion 13.5.1 on Page 255), we wish to force the existence of one solution. This can

be done by choosing a x at random, calculating Ax = b and then discarding x. The

algorithm can then be called to try to recover x. Since multiple solutions is an un-

likely outcome, and at least one solution is forced to exist, it is extremely likely that

exactly one solution exists.

Returning to QUAD, this is again the case. An x will always exist. But in QUAD,

one often has m = 2n, and so the probability of multiple solutions is very near zero.

Furthermore, the designers of QUAD state that the rank of the equations should be

full-rank, and so then there is no possibility of multiple solutions. The existence

of exactly one solution is important for SAT-solvers, because they only output one

solution.

Meanwhile, seeing the system of equations as a map, Fn→ Fm, would result in

the map being injective if it is always the case that every vector in the image Fm has

exactly one pre-image in Fn.

5.2.2.4 Outline of a Proof

Suppose the QUAD algorithm is run λ cycles, with a random initial key, and each

cycle requires TS time to run. Then λ (m−n) field elements will have been outputted,

and call this a sequence of type 1. Alternatively, generate the correct number of field

elements (λ (m− n) of them) by selecting each element uniformly at random from

the finite field, and call this a sequence of type 2. Furthermore, the finite field in

question is GF(2).

70 5 Stream Ciphers

The four theorems of [42] then prove that if an algorithm A running in time TA

can distinguish a sequence of type 1 from a sequence of type 2, with “advantage” ε ,

then there is an algorithm C with the following properties.

Algorithm C is given a randomly chosen quadratic system of m polynomials in

n unknowns, considered as a map S : GF(2)n → GF(2)m. Furthermore, for some

randomly chosen value of x ∈ GF(2)n, the algorithm C is given S(x). Algorithm

C must produce a y such that S(y) = S(x). As stated earlier, S is almost certainly

injective and so that would imply y = x. Furthermore, the success probability of

Algorithm C is at least ε/(8λ), and the running time is

TC ≤
27n2λ 2

ε2

(

2+TA +(λ +2)TS + log2

27nλ 2

ε2

)

+
27nλ 2

ε2
TS

The proof of the Berbain-Gilbert-Patarin theorem [42] includes many vital con-

cepts of the subject, and while it is somewhat difficult, it is recommended that the

reader attempt to follow it. We will not reproduce the proof here.

Note, they write m = kn, where k > 2 is an integer. This rules out underdefined

and exactly defined systems where n ≥ m. So what is Algorithm C? It is a proba-

bilistic pre-image finder for general quadratic systems of equations that happen to

be overdefined with an “overdefinition” of c = m/n = k. Furthermore, the authors

of QUAD recommend k = 2 and so c = 2. (see Section 13.3 on Page 248 for a

description of the “overdefinition” c).

But a general pre-image finder, even if restricted to c≥ 2, would be a tremendous

boon to all of algebraic cryptanalysis, and would likely2 also solve all NP-Complete

problems (see Section 11.5 on Page 199). Thus, before we can believe it exists, we

must examine the running time, and the success probability.

5.2.2.5 Exploratory Example

First, since the success probability is ε/(8λ) then by repeating the algorithm C,

we can just keep trying until we get a right answer. The number of repetitions might

be quite large, but its expected value is 8λ/ε . Then we obtain an expected running

time of

T ′C ≤
210n2λ 3

ε3

(

2+TA +

(

λ +2+
1

n

)

TS + log2

27nλ 2

ε2

)

First, let us estimate TS. The system has 320 equations and 160 unknowns, and

so there are at most
(

160
2

)
+160+1 = 12881 monomials per equation, or 4,121,920

2 This point is very tricky. Such a “pre-imagine finding machine” would not solve MQ generically.

It would only solve those cases where m > n. Only if one could prove that every SAT problem

could be written as an MQ problem with this additional property (m > n), would it be the case that

the machine could solve SAT problems even in the worse case.

Likewise, if one could prove that every instance of problem X could be written as an MQ

problem with this additional property, and such that the MQ system had a size upper-bounded

by some polynomial compared to the size of the instance of the problem X , where X is some

NP-Complete problem, could one claim that P=NP.

5.2 The Stream Cipher QUAD 71

possible total monomials. Since the coefficients of the system are random (generated

by fair coins) then we expect 2,060,960 monomials. We can be very generous and

assume 1 CPU-nanosecond per monomial, and so roughly TS≈ 2 CPU-milliseconds.

Suppose the data encrypted were a gigabyte length movie. Then 233 bits must be

encrypted, and using the recommended m = 2n (or k = 2) and GF(2), this means

that λ = 233/n.

T ′C ≤
2109

nε3

(

2+TA +

(
233 +1

n
+2

)

TS + log2

273

nε2

)

We might also take the recommended n = 160. We have now assigned values to

everything except TA and ε , and T ′C.

Because TA and ε are both variables, it appears at first glance we are stuck. Sup-

pose we want a very good distinguisher, with advantage ε = 1/4, and we allow TA

to run in 10,000 CPU-years. We do not imply that we would let one CPU run for

10,000 years, but in some distributed network, such as BOINC [1] or SETI@Home

[8], one obtains 100,000 volunteer CPUs and let the process run for 37 days.

Then solving the above inequality, we get T ′C ≤ 2.051 · · ·×1043 CPU-seconds for

Algorithm C. Recall, Algorithm C is trying to find a pre-image for a 160-variable

and 320-polynomial quadratic system. So then Algorithm C would be faster than a

brute-force search if 2−160 times that running time would be the amount of time to

accept or reject a brute-force guess at x.

That, in turn, comes to 1.403× 10−5 CPU-seconds and assuming 2 billion in-

structions per CPU-second, that is 28,066 instructions. This is entirely reasonable.

Therefore, the theorem tells us that if an attack on the cipher can distinguish it

from random with ε = 1/4 in 10,000 CPU-years, and we have one 1 gigabyte of

plaintext, with the recommended n = 160, then an algorithm which can find pre-

images of a 320 polynomial 160 variable quadratic system can exist which runs in

time 2.051 · · ·×1043 CPU-seconds or 6.499 · · ·×1035 CPU-years. If it had told us 10

CPU-seconds, then we would be shocked, and all agree that no such algorithm can

exist, and logically we would be compelled to conclude that no such distinguisher

attack on QUAD could exist either. But, the time given is not 10 CPU-seconds, but

rather larger, and even a brute-force search for x could be done in that time. And so,

in conclusion, the theorem tells us nothing for this case. Of course, finding 100,000

volunteers is extremely unlikely.

On the other hand, if T ′C = 7.3075 · · ·× 1038 were to come out of the equations,

then we could note that this is equivalent not to 28,066 instructions per brute-force

guess, but rather 1 instruction per brute-force guess. Indeed, surely that could never

exist, because checking a brute-force guess would require more than one instruc-

tion. If we believe solving quadratic systems of equations to be hard, then we could

believe that no such Algorithm C can exist. Then, we could solve backward for

TA and learn TA = 1.1152 · · ·× 107 CPU-seconds. That is 12.9 CPU-days. In other

words, we have proven if no algorithm could find pre-images in time faster than 1

instruction per brute-force guess, then no distinguisher attack could run in less than

72 5 Stream Ciphers

12.9 CPU-days. It is not much of a guarantee, but it is a guarantee. It would be more

reassuring if the time given were in years and not days.

In a sense, the proof gives us a promise that for some parameter settings, the

system is secure. But we are left without a clear idea of what those must be. The

invention of the Quadratic Sieve caused similar uncertainty to users of RSA [192]

at the time of the “squeamish ossifrage” paper [27].

5.2.3 The Yang-Chen-Bernstein-Chen Attack against QUAD

This attack, from [232] is against QUAD over GF(256) with 20 field-elements

of internal state (160 bits), and 20 outputs per cycle. It is worth noting that the paper

[232] has in it much more than we discuss here, and we recommend the reader, if

interested in exploring QUAD further, examine it. We are also dropping the ques-

tion of the semi-regularity of the equations, because the equations are generated

uniformly at random.

5.2.3.1 The Combination of Wiedemann and XL-II

As described in Section 12.4 on Page 213, the XL algorithm, improved to XL-

II in [80], reduces a polynomial systems of equations problem to a linear algebra

problem. This brings to bear the full artillery of 50 years of linear algebra research

on the difficulty of the problem. In particular, [232] applies the Block Wiedemann

algorithm of Don Coppersmith to the problem [61]. For further reading on sparse

matrices, see Appendix D on Page 323.

The expected number of field operations (which is not a good measurement for

GF(2), but could be a good measurement for GF(256) and that is what concerns us

here), for the Block-Wiedemann Algorithm is given by the following three expres-

sions for an n×n matrix

∼ 3βn3 ∼ 3wn2 ∼ 3cn

where β is the sparsity (see Section 11.6 on Page 203), w is the average “weight” of

a row (the number of non-zero entries in it), and c is the “content” of the matrix—

the number of non-zero entries in the entire matrix. As it turns out, [232] estimates

that the cost of a multiplication in this case should be c0 + c1 logn, to represent the

growing inefficiency of actually finding the entries in the sparse data structure as

the matrix gets large. We do not contest that, but rather stipulate that this should be

determined by experimentation.

The algorithm can be used to find vectors in the null space of the matrix, i.e.

An = 0 but to solve Ax = b one can simply make a “dummy variable”, and replace

the constant 1 with this dummy variable. Solutions which have this dummy variable

as zero are uninteresting, but those with the dummy variable equal to one are valid

solutions.

5
.2

T
h

e
S

tream
C

ip
h

er
Q

U
A

D
7

3

Table 5.1 The number of monomials for two cases of polynomial systems over particular finite fields.

Degree 0 1 2 3 4 5 6 7 8 9 10

Monomials of this degree 1 20 210 1540 8855 42,504 177,100 657,800 2,220,075 6,906,900 20,030,010

Monomials up to this degree 1 21 231 1771 10,626 53,130 230,230 888,030 3,108,105 10,015,005 30,045,015

Above is for GF(q), among 20 variables, q > 10.

Degree 0 1 2 3 4 5 6 7 8 9 10

Monomials of this degree 1 40 820 11,480 123,410 1,086,008 8,145,060 53,524,680 314,457,495 1,677,106,640 8,217,822,536

Monomials up to this degree 1 41 861 12341 135,751 1,221,759 9,366,819 62,891,499 377,348,994 2,054,455,634 10,272,278,170

Above is for GF(q), among 40 variables, q > 10.

Degree 0 1 2 3 4 5 6 7 8 9 10

Monomials of this degree 1 35 630 7770 73,815 575,757 3,838,380 22,481,940 118,030,185 563,921,995 2,481,256,778

Monomials up to this degree 1 36 666 8436 82,251 658,008 4,496,388 26,978,328 145,008,513 708,930,508 3,190,187,286

Above is for GF(q), among 35 variables, q > 10.

74 5 Stream Ciphers

5.2.3.2 The Attack Itself

First, we will use Theorem 16 on Page 47 to count how many monomials there

are among 20 variables in GF(256). This is given in Table 5.1 on Page 73. The data

were found by typing the following into MAPLE [3].

expand((1+z+zˆ2+zˆ3+zˆ4+zˆ5+zˆ6+zˆ7+zˆ8+zˆ9+zˆ10)ˆ20);

and one can truncate the sum at 10 terms by taking the 11-term Taylor series. Of

course, the Taylor series (evaluated about the origin) of a polynomial is itself, but

the following command accomplishes the trimming

taylor(%, z, 11)

Let us verify (for practice) one entry of the table. For terms of degree five, first

there are terms of type vwxyz, and there are
(

20
5

)
= 15,504 of these. Then, there

are terms of type v2wxy, and there are 20
(

19
3

)
= 19,380 of those. Next, there are

terms of type v2w2x and there are
(

20
2

)
18 = 3420 of that type. Also, we must not

forget terms of type v3wx of which there are 20
(

19
2

)
= 3420. Next, there also those

of the form v3w2 of which there are only 20× 19 = 380. Moving up to terms with

fourth degree powers, there are those of the form v4w, of which there are again only

20× 19 = 380, and finally terms of the type v5, of which there are precisely 20.

This brings the total to 42,504, as desired! This was extremely tedious, and so we

recommend Section 4.4.3 on Page 47 to the reader’s attention.

It will be useful to take the first n of the m equations as an operator f : GF(q)n→
GF(q)n, and the next m− n equations as an operator g : GF(q)n → GF(q). This

will then have f play the role of a state-update function and g play the role of a filter

function as shown in Section 5.1.1.1 on Page 55. Given any state xi, we will calculate

g(xi) = ki = Pi +Ci and g(f (xi)) = ki+1 = Pi+1 +Ci+1. Note, that this means that

the attack merely requires two adjacent plaintext-ciphertext pairs anywhere in the

message stream (only 320 bytes of known plaintext, but adjacent).

The equations of the form g(xi) = ki are 20 equations, and of degree 2. Each of

these has at most 231 terms in it, because that is the maximum possible for degree

2 as listed in the table. The equations of the form g(f (xi)) = ki+1 are again 20

equations, but they are of degree 4. Each of these has at most 10,626 terms in it—

again this is the maximum possible as listed in the table.

The attack uses the XL-II algorithm, which is a variant of the XL algorithm (see

Section 12.4 on Page 213), given in the paper [80]. We will elect to use “operating

degree” 10 for the XL-step. This means the degree 2 equations will be multiplied

by all possible monomials of degree 8 or lower (3,108,105 of those). That produces

62,162,100 equations with 231 terms in each one. Meanwhile, the other equations

(which were degree 4) will be multiplied by all possible monomials of degree 6 or

lower (230,230 exist). That produces 4,604,600 equations with 10,626 terms in each

one. The grand total in the final system of equations has 66,766,700 equations and

a total of 63,287,924,700 terms (among all equations). The total number of terms

of degree 10 that are possible would be 30,045,015, the number of columns of the

5.2 The Stream Cipher QUAD 75

XL matrix. Note, at the time of this writing, there are single PCs available with 128

gigabytes of RAM, and so storage (while expensive) would be entirely feasible even

on one machine, let alone a cluster.

Therefore, we have a matrix with 66,766,700 rows and 30,045,015 columns, with

content 63,287,924,700 non-zero entries (average row weight is 948 entries). The

density is β = 3.15492 · · ·×10−5, which is rather sparse.

Trimming this to a square matrix of dimension 30,045,015, we would expect

roughly 2.5670× 1018 multiplications. Various machines tried in [232] had 8–14

cycles per multiplication. Using the 8 cycles per multiplication, this is 2.0536×
1019 cycles, or at 2 billion instructors per second per core that is 325.37 core-years.

A cluster of 1000 PCs would do this in under 119 days if a sufficiently parallel

algorithm exists.

The internal state, of course, is 160 bits, and this attack is faster than brute force

if checking one potential key takes more than 1.4051×10−29 core cycles, which is

obviously the case. Alternatively, to compare it to a 80 bit secret key (ignoring the

80 bit initialization vector), then a verification of a potential key would have to take

place in more than 1.6987×10−5 core cycles, which again is obviously the case.

Note, we described earlier in Section 5.1.1.4 on Page 60 why we believe the

correct measurement is to compare to brute-forcing the secret key alone, and not the

secret key as well as the initialization vector taken together.

5.2.4 Extending to GF(16)

5.2.4.1 An Exercise

As an exercise, we invite the reader to shut the book, and with a blank piece of

paper, replicate the above calculations for GF(16). There is no need to repeat the

tedious calculation of Table 5.1 on Page 73. Note that to produce 160 bits of internal

state, there will be 40 variables. Also, attempt the attack directly, as well as in the

case of doing a “guess-and-determine” (see Section 11.7 on Page 206) attack and

Fix-XL with 5 variables guessed, and 35 remaining to be solved for.

5.2.4.2 The Solution: Direct Version

We will proceed to do the example below. As noted, to achieve 160 bits of internal

state, we will have 40 variables instead of 20 variables. Let us examine operating

degree 8.

The equations of type g(xi) = ki would be 40 equations, and they would be

quadratic, thus have at most 861 terms. We would be multiplying by all possible

monomials of degree 6. There are 9,366,819 of those. This results in 374,672,760

equations of 861 terms each, or total monomial count of 8,064,831,159.

76 5 Stream Ciphers

The equations of type g(f (xi)) = ki+1 would be quartic, and there would be 40 of

these as well. Instead of monomials of degree 6, here we will multiply by all mono-

mials of degree 4 to bring the total to degree 8. There are 135,751 of those. This

results in 5,430,040 equations of at most 135,751 terms each, or a total monomial

count of 737,133,360,040.

There are now a total of 380,102,800 equations. But there are only 377,348,994

monomials of degree 8 or fewer. And therefore, we can expect an answer.

Now let us calculate how many field multiplications are expected. The total num-

ber of monomials is 745,198,191,199 (note, unlike the previous example, storage

will be a serious question here). This is an average weight of 1960.52 · · · monomi-

als per equation, or a β = 5.1955× 10−6, very sparse indeed! Recall that ∼ 3βn3

is the expected number of field multiplications. Taking n = 377348994, we get

8.3749 · · · × 1020 field multiplications. This is very much within the “faster than

brute force” range but in order to claim feasibility, we should try to address the

storage question.

5.2.4.3 Another look at Fix-XL

Let us repeat the above example but after fixing 5 of the 40 variables. This means

that we will simply guess them, and try to solve the problem. If we guess correctly,

with probability 16−5 = 2−20, then we will get the correct answer, otherwise we

must repeat the attack with probability 1− 2−20. We must expect 219 trials on av-

erage. Note, this is yet another example of a guess-and-determine attack (see Sec-

tion 11.7 on Page 206).

Formerly, we had 40 equations of degree two from g(xi) = ki, and since the

degree was 2, we assumed they had 861 terms, as this was the worse possible. After

filling-in the guessed values, we will still have 40 equations. But we will have at

most 666 terms, as that is the maximum possible.

Likewise, we had 40 equations of degree four from g(f (xi)) = ki+1, and we again

assumed the worse possible number of monomials, namely 135,751. But now, there

are at most 82,251 monomials of degree 4 among 35 variables.

Let us try operating degree 7. This means that all the equations in the first group

will be multiplied by all possible monomials of degree 5 or lower. There are 658,008

of those, for a total of 26,320,320 equations, with 666 monomials each, or a grand

total of 438,233,328 total monomials.

Next, all the equations of the second group will be multiplied by all possi-

ble monomials of degree 3 or lower. There are 84,36 of them, for a total of

337,440 equations. They shall have 82,251 monomials each, or a grand total of

27,754,777,440 monomials.

Therefore the entire system has 26,657,760 equations. There are 26,978,328 pos-

sible monomials of degree 7, leaving us 320,568 short of the required amount. How

unfortunate! This does show the importance of being exact, as otherwise small er-

rors in approximation might have lead us to believe that we had indeed solved the

problem.

5.2 The Stream Cipher QUAD 77

Let us now try operating degree 8. The equations from the first part will be mul-

tiplied by all possible monomials of degree 6 or less. There are 4,496,388 of those.

This will yield 179,855,520 total equations. Yet, there are only 145,008,513 possi-

ble monomials of degree up to 8 among 35 variables. Since the original equations

had up to 666 monomials each, so will ours.

This means that the matrix will be of dimension 145,008,513 and will have only

666 entries per row, or β = 4.5928 · · ·×10−6, which is very sparse indeed! Then the

expect number of field operations will be 4.2013×1019, considerably better than the

previous attempt without fixing any variables.

Nonetheless, we must measure the amount of memory used. Multiplying

the number of monomials per row by the dimension of the matrix, we obtain

96,575,669,658 monomials. This is well within the threshold of 128GB of some

PCs at the time of this writing. That is the main advantage of guessing 5 variables

in this case.

Finally, we adjust for the expected number of executions (219 of them) to get a

running time of 2.2027×1025 field operations. Previously we saw that 8–14 cycles

was sufficient for a GF(256) multiplication. We shall make the horridly conservative

estimate that the required time for a GF(16) multiplication is the same. Of course, it

will be less, because the field is simpler, but continuing with 14 cycles per multiply,

this comes to 3.0838×1026 cycles.

This is faster than brute force guessing all the keys if and only if checking one

key is faster than 255.083 core cycles. Given our conservatism on the time for one

multiplication, and the fact that 40 equations with 861 monomials would have to be

evaluated, it is unclear if that this is the case.

As stated earlier, some prefer to compare against the total cost of the key and the

initialization vector, in which case this attack is satisfactory if checking one potential

internal state takes longer than 2.1100×10−22 core cycles, which is almost certainly

the case.

Finally, note that the attack is not time-feasible, as it would require 4.886×109

core-years (in other words, with one million PCs each with 4 cores, it would take

1222 years). But the standard in cryptography is that we compare the attack to brute

force, regardless if the time required is enormous.

The reader might want to recalculate the above if we guess merely 4 variables,

instead of 5.

5.2.5 For Further Reading

For further reading, the following may be useful

• “QUAD: A Practical Stream Cipher with Provable Security”, by Côme Berbain,

Henri Gilbert, and Jacques Patarin [42], published at Eurocrypt 2006.

• “QUAD: A Multivariate Stream Cipher with Provable Security”, by Côme

Berbain, Henri Gilbert, and Jacques Patarin [42], published in the Journal of

Symbolic Computation.

78 5 Stream Ciphers

• “Analysis of QUAD”, by Bo-Yin Yang, Owen Chia-Hsin Chen, Daniel J. Bern-

stein, and Jiun-Ming Chen [232], published at Fast Software Encryption in 2007.

• “Compact FPGA implementations of QUAD”, by David Arditti, Côme Berbain,

Olivier Billet and Henri Gilbert [19], published in the Proceedings of the 2007

ACM Symposium on Information, Computer and Communications Security.

• “QUAD: Overview and Recent Developments”, by David Arditti, Côme Berbain,

Olivier Billet, Henri Gilbert and Jacques Patarin [20], published in the Proceed-

ings of Symmetric Cryptography 2007.

5.3 Conclusions for QUAD

No one can question that the Berbain-Gilbert-Patarin theorem is a theoretical

work of great depth and also provides a security guarantee for GF(2) with settings

above a certain size. It does not seem possible, however, to determine what that size

threshold happens to be. Without a proof of security for extension fields, one can

only guess what is secure, and we have shown here (via [232]) several attacks on

extension field instantiations. For GF(2), the attack for n = 160 should leave one to

believe that a minimum setting would be n = 320. The performance penalty one pays

at that point might be too much to bear, compared to the AES. But as architectures

and computing evolve, perhaps that comparison might change.

For the cryptanalyst, however, QUAD has now given us an infinite variety of

ciphers against which to hone our tools, and it is for this reason that we have selected

it to appear here.

Chapter 6

Some Basic Facts about Linear Algebra over

GF(2)

The purpose of this chapter is to identify some facts about GF(2)-vector spaces

and about matrices over GF(2). To emphasize the differences between matrices

over R, or C, and matrices over GF(2), we note several interesting phenomena. The

contents of this chapter are already known, but we present them here as a “warm

up.” They are stated here so that they can be used elsewhere, and for background.

6.1 Sources

Normally, we would cite a series of useful textbooks with background informa-

tion but amazingly there is no text for finite field linear algebra. We do not know

why this is the case. The algorithms book [13, Ch. 6] mentions algorithms for finite

field linear algebra, but it has been out of print for many years. There are a few pages

in [164, Ch. 7] that deal with this topic, there named “Linear Modular Systems.” A

linear modular system is a finite state machine that happens to have a state-transition

function given as a matrix. The dynamics of such systems can be studied to much

greater extent than those with higher degree functions for state-transitions. Also,

Krishnamurthy’s work [154, Ch. 2], discusses linear algebra over the integers, a re-

lated topic. The studies [133] and [117] appear highly cited and relevant but we have

been unable to obtain a copy of either one. For solving linear sparse systems over

finite-fields, and applications to cryptography, see [156]. For other topics in finite

fields, [165] is an excellent desk-reference.

6.2 Boolean Matrices vs GF(2) Matrices

In graph theory, a particular ring-like object is often used. Its elements are “true”

and “false”; multiplication is logical-AND and addition is logical-OR. The identity

element for addition is “false.” But then clearly, this algegbraic object has no addi-

© Springer Science + Business Media, LLC 2009

81G.V. Bard, Algebraic Cryptanalysis, DOI: 10.1007/978-0-387-88757-9_6

82 6 Some Basic Facts about Linear Algebra over GF(2)

tive inverse for “true.” Thus it is a commutative semigroup on both operations (as

well as a monoid on both operations). The distributive law is easy to verify.

The name for this bizarre arrangement is a “commutative semiring.” It turns out

that linear algebra can be done in this world, in the sense of matrix multiplica-

tion and matrix squaring for calculating the transitive closures of digraphs. Matrices

filled with elements from this semiring are called boolean matrices.

Therefore, to distinguish between those matrices and matrices from GF(2), we

will use the term “boolean matrix” for the former and “GF(2)-matrices” for the

latter. For example, the Method of Four Russians for Multiplication was designed

for boolean matrices, but as will be shown in Section 9.3 on Page 137, we have

adapted it for GF(2)-matrices.

6.2.1 Implementing with the Integers

When actually operating in the boolean semiring, the following technique is very

useful. Let zero represent zero, but any positive number represent one. Then since

“positive + positive” is positive, and “zero + positive” is “positive”, while “zero

+ zero” is “zero”, we see that the addition property works as desired. So does the

multiplication.

One can therefore perform matrix multiplications in this way, by initially filling

with zeroes and ones, and operating in the integers. Periodically, one must scan the

matrix and reset all the positive values back to one to avoid overflow. But, this is

a quadratic and therefore not cheap operation. If this “sweep” is also performed at

the end of the matrix multiplication, one obatins the desired answer in the ring of

matrices over the semiring.

6.3 Why is GF(2) Different?

This section contains three very basic observations that are intended to remind

the reader that GF(2)-vector spaces are different from R-vector spaces, such as R3.

The author assumes these examples have been known for quite some time, but they

serve to remind the reader of some crucial differences, and will be touched on later

in the book as facts in their own right.

6.3.1 There are Self-Orthogonal Vectors

Consider the ordinary dot product,

6.3 Why is GF(2) Different? 83

< x,y >=
i=n

∑
i=1

xiyi

Surely in GF(2), one can see that

< (0,1,1),(0,1,1) >= 0+1+1 = 0

and thus there exist non-zero vectors which are orthogonal to themselves. These

vectors are called “self-orthogonal.” In R, C, and in Q, or any field of characteristic

zero, only the zero vector is self-orthogonal. Note that in C

< x,y >= x†y

where x† is the complex conjugate of xT , the transpose of x. This is not needed in

any real or finite field.

6.3.2 Something that Fails

Consider the Gram-Schmidt algorithm, a very well-understood linear algebraic

technique. Given a set S of vectors, the algorithm computes B, an orthonormal basis

for the span of S. The algorithm is given in Algorithm 4 on Page 83.

INPUT: A set of vectors S.

OUTPUT: An orthonormal basis B for the span of S.

1: B←{}
2: For each si ∈ S do

1: For each b j ∈ B do

1: si← si−< si,b j > b j

2: If si 6= 0 then

1: si← 1
||si|| si

2: Insert si into B.

3: Return B.

Algorithm 4: Gram-Schmidt, over a field of characteristic zero. [Jørgen Pedersen

Gram and Erhard Schmidt]

The first problem is that the normalization step (second-to-last step) requires a

norm. If the usual norm based on the inner product ||x|| =√< x,x > is used, then

self-orthogonal vectors will result in division by zero. If the Hamming norm is used,

then perhaps one would have to compute 1/3 or 1/4 times a GF(2)-vector, which

is meaningless.

However, we can drop the second-to-last step, and simply hope to create an or-

thogonal basis instead of an orthonormal basis (i.e. it will not necessarily be the case

84 6 Some Basic Facts about Linear Algebra over GF(2)

that the output vectors will all have norm one, but there will still be a basis and all

vectors will be orthogonal to each other).

Now consider the vectors S = {(1,0,1,0);(1,1,1,0);(0,0,1,1)}. The output is

B = {(1,0,1,0);(1,1,1,0);(0,1,1,1)}. Cleary the first and last vector of B are not

orthogonal, as their dot-product is 1. Thus the algorithm fails. Note that the first

input vector was a self-orthogonal vector.

To see why this is important, consider this basic use of an orthonormal basis.

Given such a basis B = {b1, . . . ,bn}, one can write a vector v ∈ span(B) as a linear

combination of the basis vectors. Let ci =< v,bi >, and then v = ∑cibi.

In the example above, consider (0,1,0,0). In this case c1 = 0, c2 = 1, c3 = 0,

by the above method. But 0b1 + 1b2 + 0b3 = (1,1,1,0) 6= (0,1,0,0). Instead, a

better choice would have been c1 = 1, c2 = 1, c3 = 0, which produces the correct

answer. Note the only coefficient that is wrong is the one computed for the only self-

orthogonal vector. Since Gram-Schmidt is crucial in the QR-factorization algorithm,

this problem rules out doing QR in GF(2)-vector spaces, at least without serious

modification to the algorithm.

6.3.3 The Probability a Random Square Matrix Singular or

Invertible

The following theorem is very interesting.

Theorem 25. A random n×n matrix over GF(2), filled with independent and iden-

tically distributed fair coins, is non-singular with probability:

i=n

∏
i=1

1−2i−1−n

Consider the set of n×n matrices over GF(2). Suppose we wish to calculate the

probability that a random matrix (one filled with the output of random fair coins),

is singular or invertible. The ratio of invertible n× n matrices (i.e. |GLn(GF(2))|),
to all n× n matrices (i.e. |Mn(GF(2))|), will give us that probability. The latter

calculation is trivial. Each matrix has n2 entries and so there are 2n2
such matrices.

Now for the former, consider the first column. It can be anything except the

column of all zeroes, or 2n−1 choices. The second column can be anything except

the first column, or all zeroes, thus 2n− 2 choices. The third column cannot be all

zeroes, the first column, the second column, or their sum, or 2n−4 choices. It is clear

that the ith column cannot contain a vector in the subspace generated by the previous

i− 1 columns, which are linearly independent by construction. This subspace has

2i−1 elements. Thus the ith column has 2n−2i−1 choices.

This results in the following expression for the probability

6.4 Null Space from the RREF 85

∏
i=n
i=1 2n−2i−1

2n2
=

i=n

∏
i=1

1−2i−1−n

The latter is obviously just a rational number. For any particular value of n, it can

be calculated. But as n→ ∞, the product converges toward 0.28879 . . ., a positive

real number. (This is also a good approximation for n > 10). This value is very close

to
√

1/12.

While this result is well known [202] or [166, Ch. 16] this is still a surprise, be-

cause for any real random variable with a continuous probability distribution func-

tion, filling a matrix with independent and identically distributed values will produce

a singular matirx with probability zero.

Theorem 26. Let A be a matrix filled with entries from R being given by some inde-

pendantly but identically distributed continuous random function. The probability A

is singular is zero.

Proof. The determinant of an n× n matrix can be thought of as a function with n2

variables. It is a polynomial, mapping from Rn2
to R. Therefore, the pre-image of

zero (the set of input vectors so that the determinant is zero), is the set of zeros of a

multivariate polynomial, which means it is a closed set in the Zariski topology. As

such, since it is not the whole domain, it therefore is of measure zero in the entire

space Rn2
. ⊓⊔

6.4 Null Space from the RREF

Given a small matrix in Reduced Row Echelon Form, surely the reader knows

how to recover the null space of the matrix. (A review of null spaces can be found

in Section 10.5.5 on Page 174.) However, the algorithm to do so efficiently is a bit

different from the standard method by hand, because normally by hand the user has

a 4×4 matrix or smaller, and the null space therefore cannot be very complicated.

The algorithm has given students of mine some trouble, so we will derive it here.

The author apologizes in advance if the reader’s intelligence is insulted, but a review

of null spaces can be found in Section 10.5.5 on Page 174.

For the moment, we will switch back to a general field F. Since the null space of

a matrix is the set of vectors n such that An = 0, we find the null space by solving

precisely that system. There is no need to adjoin the zero-vector 0 to A prior to doing

Gaussian Elimination into RREF, because that new column will remain all zeroes

at all times.

Suppose in the RREF, there are r non-zero rows. This r is the rank of the matrix.

Call the left-most non-zero entry in each row a pivot element. If a column has a pivot

element in it, the variable associated with that column will be called dependent, and

if a column has no pivot element, that variable will be called free.

Let one non-zero row in the RREF be row i, and suppose its left-most non-zero

entry is Ai j. This should be 1 if the standard definition of RREF is used. Suppose

86 6 Some Basic Facts about Linear Algebra over GF(2)

the other non-zero entries are Aik, Aiℓ, and Aim. Then we have

Ai jx j +Aikxk +Aiℓxℓ +Aimxm = 0

and because Ai j = 1, this can easily be thought of as

x j =−Aikxk−Aiℓxℓ−Aimxm

which can permit us to specialize to the case where all the free xs are zero, except

perhaps xℓ, which we will set to negative one. Then we substitute and obtain Ai jx j =
x j = Aiℓ.

Thus, for the rows i ∈ {1,2, . . . ,r} let the left-most non-zero entry be Ai, f (i) and

then we would have x f (i) = Aiℓ. This can be written for all the dependent variables.

The free variables have all been set to zero, except for xℓ which is negative one. Thus,

all the variables have been accounted for. In summary, the free variables are all zero

except the one we are working on, which gets−1, and the dependent variables come

right out of the matrix A.

Just as we did this for xℓ, we should do this for each free variable. If A has n

columns, then there will be n− r free variables. This gives rise to the algorithm

stated here as Algorithm 5 on Page 87.

Furthermore, it is easy to see that Algorithm 5 on Page 87 runs in quadratic time,

because The first outer loop runs r ≤ n times, and the second outer loop runs n− r

times. If one had to scan the row i in the first loop entry by entry to find the first non-

zero entry (which would be very bad programming) then it is at most Θ(n) reads,

for Θ(rn) steps. The second outer loop has an inner loop which will run r times, and

uses a constant number of operations. Thus the second outer loop accounts for Θ(r)
steps each time it runs, or Θ((n− r)r) = Θ(nr− r2) steps total. The total running

time is thus Θ(nr− r2). Since r ≤ n, this will never be negative. Thus if the rank is

near 0, or near n, the algorithm is very fast.

6.5 The Number of Solutions to a Linear System

Surely over an infinite field, either Ax = b has no solutions, one solution, or

infinitely many solutions. To show this fact, assume that Ax = b has two solutions,

x and x′ with x 6= x′, and we will produce infinitely many. First, note that Ax−Ax′ =
b−b = 0. Thus A(x−x′) = 0 and since x 6= x′ then (x−x′) 6= 0. Also, for all non-

zero field elements k, then A(k(x−x′)) = kA(x−x′). Thus A has an infinite number

of vectors n such that An = 0, where each n = k(x−x′) for some k. Formally, A has

an infinite null space. But observe,

A(x+n) = Ax+An = Ax+0 = Ax = b

each null-space vector produces a new solution.

6.5 The Number of Solutions to a Linear System 87

INPUT: A matrix A in reduced row-echelon form, of dimension m×n.

OUTPUT: A set of vectors N that is a basis for the null space of A.

1: Let the number of non-zero rows in A be r.

2: Let F ←{1,2,3,4, . . . ,n}
3: Let p be an r-dimensional vector, initially the zero vector.

4: For i = 1 to r do

• Let Ai j be the left-most non-zero entry in row i.

Note: Since Ai j is a pivot-element, then x j is not a free variable.

• Remove j from F .

• pi← j

Note: Now the set F is the set of free variables.

5: For each f ∈F do

Note: We now compute the case of all free variables equal to zero except x f =−1.

1: Let n be an n-dimensional vector, initially the zero vector.

2: n f ←−1

3: For i = 1 to r do

• j← pi

Note: This means Ai j is the left-most non-zero entry in row i.

Note: The ith equation now reads x j = Ai f .

• n j ← Ai f

4: Insert n into the set N .

6: Output N .

Algorithm 5: Finding the Null Space from an RREF [Classic]

Thus, in the case of R, C, or Q, since there are infinitely many n, there are in-

finitely many solutions.

Likewise, the number of solutions in the finite field case is exactly equal to the

size of the null space. We have already shown a map, f (n) = x+n, that produces a

solution to the system Ax = b for any vector n in the null space of A. This f works

over finite fields as well, and is an injection from the null space of A into the solution

space of Ax = b.

There is an injection going the other way. Suppose Ax = b has at least one so-

lution, and denote it x′. For any solution x, we have already shown that (x− x′) is

in the null space. Thus g(x) = x− x′ is a map from the solution space of Ax = b

into the null space of A and it too is injective. Since the sets involved are finite

(when working over finite fields), injection implies bijection, and both f and g are

bijections. Thus we have proven

Theorem 27. The number of solutions to Ax = b, is either zero, or if a solution

exists, then equal to the size of the null space of A.

The null space of A is a subspace and so it has a basis and thus a dimension. This

is called the nullity of A. For a square matrix, the nullity plus the rank of A is the

dimension of A. For a rectangular matrix, the nullity plus the rank is the number of

columns.

88 6 Some Basic Facts about Linear Algebra over GF(2)

Actually in either case, the rank of A plus the nullity of A is the number of

columns of A. Thus if the rank is r, and A is an m× n matrix, we have a nullity

of n− r, or the null space has dimension n− r. Of course, if there are q elements in

the finite field, then a subspace of dimension d has qd elements in it. Therefore, we

have the following corollary:

Corollary 28. If A is an m× n matrix with rank r, over the field of size q, then the

linear system of equations given by Ax = b has either no solutions, or qn−r solutions.

Thus over GF(2), we can have a system of equations with 0, 1, 2, 4, 8,

16,. . . solutions, not just 0, 1, or infinity solutions, as over R, C, or Q.

Chapter 7

The Complexity of GF(2)-Matrix Operations

Here, we propose a new model, counting matrix-memory operations instead of

field operations, for reasons to be discussed. It turns out this model describes reality

only partially—but we will explicitly discuss the circumstances in which the model

is descriptive and in which it fails, see Section 7.1.4 on Page 92. The complexity

expressions are summarized in Table 7.1 on Page 105. Also of interest are certain

data structure choices that we made in arranging our linear algebra library, see Sec-

tion 9 on Page 133. This library was used by Nicolas Courtois in his cryptographic

research, as well as by the author, and now forms part of the GF(2) linear algebra

suite of SAGE [7], an open source competitor to MAGMA [2], MATLAB [5], MAPLE

[3], and MATHEMATICA[4]. These are described in Section 7.4 on Page 94.

7.1 The Cost Model

In papers on matrix operations over the real or complex numbers, the number

of floating point operations is used as a measure of running time. This removes

the need to account for assembly language instructions needed to manipulate index

pointers, iteration counters, discussions of instruction set, and measurements of how

cache coherency or branch prediction will impact running time. In this dissertation,

floating point operation counts are meaningless, for matrices over GF(2) do not

use floating point operations. Therefore, we propose that matrix entry reads and

writes be tabulated, because addition (XOR) and multiplication (AND) are single

instructions, and can even be aggregated (see Section 9.5.4 on Page 149) while

reads and writes on rectangular arrays are much more expensive. Clearly these data

structures are non-trivial in size, so memory transactions will be the bulk of the time

spent.

From a computer architecture viewpoint in particular, the matrices required for

cryptanalysis cannot fit in the cache of the microprocessor, so the fetches to main

memory are a bottleneck. Even if exceptionally careful use of temporal and spatial

locality guarantees effective caching (and it is not clear that this is even possible),

© Springer Science + Business Media, LLC 2009

89G.V. Bard, Algebraic Cryptanalysis, DOI: 10.1007/978-0-387-88757-9_7

90 7 The Complexity of GF(2)-Matrix Operations

the data must still travel from memory to the processor and back. The bandwidth

of buses has not increased proportionally to the rapid increase in the speeds of mi-

croprocessors. Given the relatively simple calculations done once the data is in the

microprocessor’s registers (i.e. single instructions), it is extremely likely that the

memory transactions are the rate-determining step.

When attempting to convert these memory operation counts into CPU cycles,

one must remember that other instructions are needed to maintain loops, execute

field operations, and so forth. Also, memory transactions are not one cycle each,

but can be pipelined. Thus we estimate that about 4–10 CPU cycles are needed per

matrix-memory operation.

7.1.1 A Word on Architecture and Cross-Over

Often, there is an asymptotically fast algorithm for some problem, and then other

algorithms which are better for small and medium-sized versions of the problem.

The points at which one algorithm ceases to dominate another is called the “cross

over” between those two algorithms. Calculating the cross-over point, at least ap-

proximately, is of importance, so that when presented with a specific problem in-

stance, one knows exactly which algorithm to run on it.

Due to the variations of computer architectures, the coefficients given here may

vary slightly. In particular, on some machines, 32 GF(2) addition operations can

be a single instruction, and on others, 64. Slight variations in the coefficients might

appear to be of little interest, but when comparing two algorithms (e.g. M4RM and

Strassen’s Matrix Multiplication Algorithm), we must consider the cross-over time.

In this case, it would be given by

c1
n3

logn
= c2n2.807···

and one can see that time variations in c1 or c2 are very important, because

n0.193/ logn = c2
c1

, or neglecting the logn, roughly n∼ (c2/c1)
5. Certainly, changes

in cache sizes on different machines that are otherwise identical can also change the

cross-over. For this reason, the BLAS (Basic Linear Algebra System) called ATLAS

(Automatically Tuned Linear Algebra System) [229] is very exciting. It automati-

cally computes the precise cross-over sizes exactly on the machine during a tuning

stage while being installed. Therefore, the algorithms always perform optimally.

On the other hand, by deriving running times mathematically rather than exper-

imentally, one need not worry about artifacts of particular architectures or bench-

marks skewing the results.

7.1 The Cost Model 91

7.1.2 Is the Model Trivial?

A minor technicality is defining what regions of memory the reads and writes

should count. Clearly registers do not count and the original matrix should. The

standard we set is that a read or write counts unless it is to a “scratch” data structure.

We define a data structure to be “scratch” if and only if it size is bounded by a

constant.

For example, consider the following three step algorithm of inverting a non-

singular n×n matrix, in ∼ 2n2 time.

1. Read in a matrix. (n2 reads).

2. Invert the matrix. (No reads or writes).

3. Write the output matrix. (n2 writes).

This is not allowed (or rather, we would not tabulate Step 2 as zero cost) because

the temporary storage of the matrix requires n2 field elements, and this is not upper-

bounded by a constant.

7.1.3 Counting Field Operations

Traditionally, in a linear algebra text, one counts the number of field operations.

Or alternatively, one can count the number of multiplications or divisions. However,

as stated earlier, that does not make sense for GF(2)(see [31, App. B]).

It is easy to see that counting field multiplications only versus counting field

multiplications and additions produces two distinct tabulations in almost all cases.

It is also easy to imagine that counting field multiplies and reads/writes will result

in distinct tabulations.

An interesting question is if counting reads/writes is distinct from counting field

multiplications and additions. In Gaussian Elimination, the answer is yes, because

of “if” operations. If a row contains a zero in the pivot column, it is read but never

operated upon.

The follow-up question is if counting reads/writes is distinct from counting field

multiplications, additions, and conditionals (if’s). After all, the latter three opera-

tions are all single logic gates.

In this case consider a one by one matrix multiplication, or one-dimensional

dot-product. It requires one arithmetic operation, and three reads/writes. A two-

dimensional dot product requires four reads and one write, versus two multiplica-

tions and one addition. An n-dimensional dot-product requires 2n + 1 reads/writes

but 2n−1 field operations, for a ratio of 2n+1
2n−1

. While this is∼ 1, the ratio is changing.

Note it is important to have very close estimates of the coefficient when performing

cross-over analysis.

An interesting distinction is between Gaussian Elimination with full-pivoting

versus partial-pivoting [222, Ch. 1.8]. In the former, during iteration i, one searches

Aii, . . . ,Amn for a non-zero element (often of largest absolute value) to pivot upon. In

92 7 The Complexity of GF(2)-Matrix Operations

the later, one mrely searches Aii, . . . ,Ami, the active column. The difficulty is not do-

ing both column-swap and row-swap (full pivoting) versus row-swap alone (partial

pivoting). Rather, the difficulty is that one must make roughly (n− i+1)(m− i+1)
comparisons versus (n− i+1) of them. And in practice, partly because it obliterates

any spatial locality for caching, full pivoting is extremely expensive, and is only

used for the most sensitive calculations.

7.1.4 Success and Failure

The model described above has had some success. When actually implementing

the algorithms in code, and performing timing experiments, the observed exponents

have always been correct. When comparing different variants of the same algorithm

(e.g. triangular versus complete Gaussian Elimination), the coefficients have been

correct to about 2%.

However, when comparing different algorithms (e.g. MAGMA’s Strassen-naı̈ve

matrix multiplication vs M4RM, or M4RM vs naı̈ve matrix multiplication) the co-

efficients sometimes give ratios that are off by up to 50%. This inaccuracy above

is probably due to the role of caching. Some algorithms are more friendly toward

cached memory than others. It is notoriously hard to model this.

Another reason is that MAGMA has been hand-optimized for certain processors at

the assembly language level, and the author’s library has been written in C (though

compiled with all optimization settings turned on).

In calculating the number of times a subroutine will be called (i.e. How many

times do you use the black-box n0 × n0 matrix multiply when inverting a much

larger matrix?), the model is exact. Presumably because nearly all the time is spent

in the black box, and it is the same single black box routine in all cases, the number

of calls to the black box is all that matters. Since this is an integer, it is easy to

measure if one is correct.

7.2 Notational Conventions

Precise performance estimates are useful, so rather than the usual five symbols

O(n), o(n), Ω(n), ω(n), Θ(n), we will use f (n)∼ g(n) to indicate that

lim
n→∞

f (n)

g(n)
= 1

in the case that an exact number of operations is difficult to state. While O(n) state-

ments are perfectly adequate for many applications, coefficients must be known to

determine if algorithms can be run in a reasonable amount of time on particular

target ciphers.

7.3 To Invert or to Solve? 93

Let f (n) ≤∼ g(n) signify that there exists an h(n) and n0 such that f (n) ≤ h(n)
for all n > n0, and h(n) ∼ g(n). Equivalently, this means limsup f (n)/g(n) ≤ 1 as

n→ ∞.

Matrices in algebraic cryptanalysis are over GF(2) unless otherwise stated, and

are of size m rows and n columns. Denote ℓ as the lesser of n and m. If n > m or

ℓ = m the matrix is said to be underdefined, and if m > n or ℓ = n then the matrix is

said to be overdefined. Also, β is the fraction of elements of the matrix not equal to

zero.

7.3 To Invert or to Solve?

Generally, four basic options exist when presented with solving systems of equa-

tions over the reals as defined by a square matrix. First, the matrix can be inverted,

but this is the most computationally intensive option. Second, the system can be ad-

joined by the vector of constants, and the matrix reduced into a triangular form so

that the unknowns can be found via back-substitution (see Section 7.5.4 on Page 98).

Third, the matrix can be factored into LU-triangular form, or other forms. Fourth, the

matrix can be operated upon by iterative methods, to converge to a matrix near to its

inverse. Unfortunately, in finite fields concepts like convergence toward an inverse

do not have meaning. This rules out option four. The second option is unattrac-

tive, because solving the same system for two sets of constants requires twice as

much work, whereas in the first and third case, if the quantity of additional sets of

constants is small compared to the dimensions of the matrices, trivial increase in

workload is required.

Among these two remaining strategies, inversion is almost strictly dominated

by LUP-factorization. The LUP-factorization is A = LUP, where L is lower unit

triangular, U is upper unit triangular, and P is a permutation matrix. There are other

factorizations, like the QR [217, Lec. 7], which are not discussed here because no

one (to the author’s knowledge) has proposed how to do them over GF(2). (For

example, the QR depends on the complexity of Gram-Schmidt, but Gram-Schmidt

fails over GF(2), see Section 6.3.2 on Page 83). While the LUP-factorization results

in three matrices, and the inverse in only one, the storage requirements are about the

same. This is because, other than the main diagonal, the triangular matrices have

half of their entries forced at zero by definition. Also, since the main diagonal can

have only units, and the only unit in this field is 1, the main diagonal of the triangular

matrices need not be stored. The permutation matrix can be stored with n entries,

rather than n2, as is explained in Section 7.4 on Page 94.

Calculating the inverse is always (for all methods discussed in this book) more

work than the LUP-factorization but by a factor that varies depending on which al-

gorithm is used. Also the LUP-factorization allows the determinant to be calculated,

but for all non-singular GF(2) matrices the determinant is 1. And for singular ma-

trices it is zero, so this is not informative. Also, multiplying a matrix by a vector

requires ∼ 3n2 matrix-memory operations (a read-read-write for each field opera-

94 7 The Complexity of GF(2)-Matrix Operations

tion, with ∼ n2 field operations). For back-substitution in the LUP-case, one must

do it twice, for L and for U . The back-substitution requires ∼ n2/2 field operations,

or ∼ (3/2)n2 matrix-memory operations, so this ends up being equal also.

7.4 Data Structure Choices

The most elementary way to store a matrix is as an array of scalars. Two-

dimensional arrays are often stored as a series of one-dimensional arrays in se-

quence, or as an array of pointers to arrays (one for each row, called a “ragged ar-

ray”). In either case, it is not obvious if the linear arrays should be rows or columns.

For example, in a matrix multiplication AB with the naı̈ve algorithm, spatial locality

will be enhanced if A’s rows and B’s columns are the linear data structure. Those

options are called row-major and column-major respectively. More information on

the row-major versus column-major tradeoff can be found in [190].

Two data structures that we used are proposed and described below.

7.4.1 Dense Form: An Array with Swaps

For dense matrices, we present a method of storing the matrix as an array but

with very fast swaps. The cells of the matrix are a two-dimensional array, with the

rows being the linear data structure, since more of the work in the algorithms of

this dissertation is performed upon rows than upon columns. Additionally, two one-

dimensional arrays called row-swap and column-swap are used. Initially these are

filled with the numbers 1,2, . . .m and 1,2, . . .n. When a swap of rows or columns

is called for, the numbers in the cells of the row-swap array or column-swap array

corresponding to those rows are exchanged. When a cell ai j is called for, the result

returned is ari,c j
, with ri representing the ith entry of the row-swap array, and c j the

jth entry of the column-swap array. In this manner, row and column swaps can be

executed in constant time, namely two read/writes each.

For example, a 5×5 matrix with rows 1 and 2 being exchanged, and then rows 4

and 2 being exchanged, would cause the matrix to have {2,4,3,1,5} as its row-swap

array.

7.4.2 Permutation Matrices

The definition of a permutation matrix at first seems arbitrary.

Definition 29. A matrix with exactly one entry in each row equal to 1, and exactly

one entry in each column equal to 1, but zero everywhere else, is called a permuta-

tion matrix.

7.4 Data Structure Choices 95

However, the cause of this definition is that multiplication by a permutation ma-

trix on the left causes a swapping of rows, and on the right causes a swapping of

columns. In fact, the permutation matrix itself is just an identity matrix, after some

rows and columns have been swapped. We propose an efficient scheme for storing

and performing operations on permutation matrices.

It is only necessary to store a row-swap array and column-swap array as before,

not the body of the matrix. The row-swap and column-swap arrays allow a quick

look-up, by calculating ai j = 1 if and only if ri = c j (i.e. the cell is on the main

diagonal after swapping), and returning ai j = 0 if ri 6= c j.

In linear time one can compose two permutations (multiply the matrices) or invert

the permutation (invert the matrix). The algorithms for this are given in Algorithm 6

on Page 95 and Algorithm 7 on Page 95. Note that the algorithms should be called

twice, once for row permutations and once for columns. Alternatively, the transpose

of a permutation matrix is its inverse.

INPUT: Two permutation matrices or row-swap arrays, in the form r1, . . . ,rn, and s1, . . . ,sn.

OUTPUT: Their product t1, . . . , tn.

1: For i = 1 to n do

1: temp← ri

2: ti← stemp

NOTE: for column-swap arrays, the algorithm is identical.

Algorithm 6: To compose two permutations or row-swap arrays. [Classic]

INPUT: A permutation matrix or row-swap array, in the form r1, . . . ,rn.

OUTPUT: The inverse permutation matrix or row-swap array, in the form s1, . . . ,sn.

1: For i = 1 to n do

1: temp← ri

2: stemp← i

NOTE: for column-swap arrays, the algorithm is identical.

Algorithm 7: To invert a permutation matrix or row-swap array. [Classic]

It is trivial to see that a permutation can be applied to a vector in linear time,

by simply moving the values around in accordance with the row-swap array. To

multiply a matrix by a permutation is also a linear time operation, because one only

need apply the permutation’s row-swap array to the matrix’s row-swap array (as in

composing two permutations, in Aglorithm 6 on Page 95).

96 7 The Complexity of GF(2)-Matrix Operations

7.5 Analysis of Classical Techniques with our Model

7.5.1 Naı̈ve Matrix Multiplication

For comparison, we calculate the complexity of the naı̈ve matrix multiplication

algorithm, for a product AB =C with dimensions a×b, b×c and a×c, respectively.

INPUT: Two matrices, A of dimension a×b, and B of dimension b× c.

OUTPUT: A matrix C = AB, of dimension a× c.

1: for i = 1,2, . . . ,a

1: for j = 1,2, . . . ,c
1: Calculate Ci j ← Ai1B1 j +Ai2B2 j + · · ·AibBb j . (Costs 2b+1 reads/writes).

Algorithm 8: Naı̈ve Matrix Multiplication [Classic]

From the algorithm given in Algorithm 8 on Page 96, this clearly requires 2abc+
ac operations, or for square matrices 2n3 +n2 operations. This reduces to∼ 2abc or

∼ 2n3, when a = b = c = n.

7.5.2 Matrix Addition

If adding A+B =C, obviously ci j = ai j +bi j requires two reads and one write per

matrix entry. This yields ∼ 3mn matrix memory operations overall, if the original

matrices are m×n.

7.5.3 Dense Gaussian Elimination

The algorithm known as Gaussian Elimination is very familiar. It has many

variants, but three are useful to us. As a subroutine for calculating the inverse of a

matrix, we refer to adjoining an n×n matrix with the n×n identity matrix to form

an n× 2n matrix. This will be processed to output the n× n identity on the left,

and A−1 on the right. The second is to solve a system directly, in which case one

column is adjoined with the constant values. This is “full Gaussian Elimination” and

is found in Algorithm 9 on Page 97. Another useful variant, which finishes with a

triangular rather than identity submatrix in the upper-left, is listed in Algorithm 10

on Page 98, and is called “Triangular Gaussian Elimination.” (That variant requires

2/3 as much time for solving a system of equations, but is not useful for finding

matrix inverses). Since Gaussian Elimination is probably known to the reader, it is

not described here, but it has the following cost analysis.

7.5 Analysis of Classical Techniques with our Model 97

INPUT: A matrix A of dimension m×n. In the special case for matrix inverses, this is formed

by an m×m matrix B and an m×m identity matrix being adjoined to form a m× 2m matrix.

In the special case for solving the system Ax = b, this is formed by an m×n matrix A, and an

m×1 matrix (i.e. an m-dimensional vector) b being adjoined.

OUTPUT: The reduced row-echelon form of the input matrix A. In the special case of a matrix

inverse, if detB 6= 0, this is an m×m identity matrix adjoined to a m×m matrix which is equal

to B−1. In the special case for solving the system Ax = b, if A is full-rank, then the right-hand

column is the solution vector x, possibly with zeroes concatenated at the end.

1: Let ℓ←min(m,n)†
2: For i = 1,2, . . . , ℓ

1: Search for a non-zero entry in region aii . . .amn† (Expected cost is 2 reads). Call this entry

axy.

2: Exchange rows i and x via row-swap array, exchange columns i and y via column-swap

array. (Costs 4 writes).

3: For each row j = 1,2, . . . ,m, but not row i

1: If a ji = 1 (Costs 1 read) then for each column k ∈ i, i+1, . . . ,n
1: Calculate a jk← a jk +aik. (Costs 2 reads, 1 write).

Note: † signifies that the value of n in these steps, in the special case when solving Ax = b,

refers to the number of columns of A before the adjoining, not afterward. In all other cases, n

refers to the dimensions of A at that point in the algorithm.

Algorithm 9: Dense Gaussian Elimination, for Inversion [Carl Friedrich Gauss and

Wilhelm Jordan]

The search for a non-zero element in a certain region in Step 2.1 above might

seem a bit odd. The possibility of an entry being zero is far more common in GF(2)
than otherwise. This process of searching for a non-zero pivot element (i.e. a one)

is akin to Gaussian Elimination “with full-pivoting” (see Section 7.1.3 on Page 91).

However, this algorithm here is for dense matrices. Therefore, we make the “fair

coin assumption” (see Section 9.0.4 on Page 134), and therefore we would have an

expected value of two entries to check before we find a one.

The total number of expected reads and writes is given by

=
i=ℓ

∑
i=1

6+(m−1)(1+0.5(3)(n− i+1))

= 1.5nmℓ−0.75mℓ2 +1.75mℓ−1.5nℓ+0.75ℓ2 +4.25ℓ

∼ 1.5nmℓ−0.75mℓ2

Note that the 0.5 in the first line is due to the fair-coin assumption also. At worst,

all columns will have a non-zero entry in column i, and at best, none will. The value

0.5 would change to 1 or 0, respectively, in those cases.

Thus for the overdefined case (ℓ = n) one obtains 1.5n2m−0.75mn2, and for un-

derdefined (ℓ = m) the total is 1.5nm2−0.75m3. For a square matrix this is 0.75n3.

The alternative form of the Gaussian Elimination algorithm, which outputs an

upper-triangular matrix rather than the identity matrix in the upper-left ℓ×ℓ subma-

98 7 The Complexity of GF(2)-Matrix Operations

trix, is found in Algorithm 10 on Page 98. This is not useful for finding the inverse

of a matrix, but is useful for LU-factorization or solving a system of m equations

in n unknowns. Here it is assumed that one column is adjoined that contains the

constants for a system of linear equations.

INPUT: A matrix A of dimension m×n. In the special case for solving the system Ax = b, this

is formed by an m× n matrix A, and an m× 1 matrix (i.e. an m-dimensional vector) b being

adjoined.

OUTPUT: The row-echelon form of A. In the special case of solving Ax = b the system is now

ready for back-solving, see Section 7.5.4 on Page 98.

1: Let ℓ = min(m,n)†
2: For each column i = 1,2, . . . , ℓ

1: Search for a non-zero entry in region aii . . .amn† (Expected cost is 2 reads). Call this entry

axy.

2: Exchange rows i and x via row-swap array, exchange columns i and y via column-swap

array. (Costs 4 writes).

3: For each row j ∈ i+1, i+2, . . . ,m
1: If a ji = 1 then for each column k ∈ i, i+1, . . . ,n

1: Calculate a jk← a jk +aik (Costs 2 reads, and 1 write).

Note: † signifies that the value of n in these steps, in the special case when solving Ax = b,

refers to the number of columns of A before the adjoining, not afterward. In all other cases, n

refers to the dimensions of A at that point in the algorithm.

Algorithm 10: Dense Gaussian Elimination, for Triangularization [Carl Friedrich

Gauss]

The total number of reads and writes is given by

i=ℓ

∑
i=1

6+(m− i)(1+0.5(3)(n− i+1))

= 1.5nmℓ−0.75mℓ2−0.75nℓ2 +0.5ℓ3 +1.75mℓ

−0.5ℓ2−0.75nℓ+5ℓ

∼ 1.5nmℓ−0.75mℓ2−0.75nℓ2 +0.5ℓ3

Thus for the overdefined case (ℓ = n) one obtains 1.5n2m−0.75mn2−0.25n3, and

for underdefined (ℓ = m) the total is 0.75nm2− 0.25m3. For a square matrix this

is 0.5n3.

7.5.4 Back-Solving a Triangulated Linear System

For dense matrices A, to solve Ax = b is a non-trivial operation, as we have

already seen. However, in the special case that A is either upper-triangular or lower-

triangular, then this becomes a quadratic-time operation. That is, of course, a huge

7.6 Strassen’s Algorithms 99

savings compared to cubic or near-cubic, and so it is the motivation behind LUP-

factorizations (see Section 10 on Page 98 and Section 9.5.2 on Page 147, as well as

Theorem 42 on Page 116). This is sometimes called back-substitution.

Here we present the algorithm for upper-triangular matrices as Algorithm 11 on

Page 99 but the one for lower-triangular is similar, with the indices changed in the

obvious way.

INPUT: An m×n upper-triangular matrix U and an m-dimensional vector b.

OUTPUT: An n-dimensional vector x such that Ux = b.

1: Let x be initialized with the all-zero vector. (Cost: n writes)

2: For each row i = min(m,n) down to 1

1: if Uii = 0 then continue with next i value. (Cost: 1 read)

2: Let xi← bi. (Cost: 1 read and 1 write).

3: For each column j = n down to i+1

1: xi← xi + x jUi j (Cost: 2 reads using an accumulator for xi)

4: (Cost: 1 write to copy accumulator for xi into memory)

NOTE: For a lower-triangular matrix L, the algorithm would proceed identically, but with the

indices changed in the obvious way.

Algorithm 11: Back-Solving a Triangulated System [Classic]

In the cost analysis, for simplicity, we assume Uii 6= 0 each time. As before,

ℓ = min(m,n). The total cost is then

n+
i=ℓ

∑
i=1

4+
j=n

∑
j=i+1

2 = 2nℓ− ℓ2 +3ℓ+n

∼ 2nℓ− ℓ2

which for m > n would be∼ n2 matrix-memory operations, and for m < n would be

∼ 2nm−m2 matrix-memory operations. Naturally for square matrices this comes to

∼ n2.

7.6 Strassen’s Algorithms

Contrary to popular belief, Volker Strassen’s famous paper [212] actually con-

tains three algorithms. The first is the matrix multiplication algorithm given below;

the second is a matrix inversion method given immediately after it here; the third is

a method for taking determinants, which does not affect us.

100 7 The Complexity of GF(2)-Matrix Operations

7.6.1 Strassen’s Algorithm for Matrix Multiplication

To find [
a11 a12

a21 a22

][
b11 b12

b21 b22

]

=

[
c11 c12

c21 c22

]

one can use the algorithm found in Algorithm 12 on Page 100. One can see that this

consists of 18 matrix additions and 7 matrix multiplications.

INPUT: Two matrices a and b, both of size 2×2. But note, usually the elements of a and b are

themselves very large matrices.

OUTPUT: The produce matrix c = ab, also of size 2×2.

1: Calculate 10 sums, namely: s1 ← a12− a22, s2 ← a11 + a22, s3 ← a11− a21, s4 ← a11 + a12,

s5 ← a21 + a22, s6 ← b21 + b22, s7 ← b11 + b22, s8 ← b11 + b12, s9 ← b12 − b22, and s10 ←
b21−b11.

2: Calculate 7 products, namely: m1 ← s1s6, m2 ← s2s7, m3 ← s3s8, m4 ← s4b22, m5 ← a11s9,

m6← a22s10, and m7← s5b11.

3: Calculate 8 sums, namely: s11←m1 +m2, s12←−m4 +m6, s13←−m3 +m2, s14←−m7 +m5,

c11← s11 + s12, c12← m4 +m5, c21← m6 +m7, and c22← s13 + s14.

Algorithm 12: Strassen’s Algorithm for Matrix Multiplication [Volker Strassen]

Note that the matrices c11 and c22 must be square, but need not equal each other

in size. For simplicity assume that A and B are both 2n× 2n matrices. The seven

multiplications are to be performed by repeated calls to Strassen’s algorithm. In

theory one could repeatedly call the algorithm until 1× 1 matrices are the inputs,

and multiply them with a logical AND operand. However, its unlikely that this is

optimal. Instead, the program should switch from Strassen’s algorithm to some other

algorithm below some size n0.

As stated in Section 7.5.2 on Page 96, the n× n matrix additions require ∼ 3n2

matrix memory operations each, giving the following equation:

M(2n) = 7M(n)+54n2

allowing one to calculate, for a large matrix,

M(4n0) = 72M(n0)+(4+7) ·54n2
0

M(8n0) = 73M(n0)+(16+7 ·4+72) ·54n2
0

M(16n0) = 74M(n0)+(64+16 ·7+72 ·4+73) ·54n2
0

M(2in0) = 7iM(n0)+(4i−1 +4i−27+4i−372 + · · ·+4 ·7i−2 +7i−1)54n2
0

M(2in0) ≈ 7iM(n0)+7i−1(1+4/7+16/49+64/343+ · · ·)54n2
0

M(2in0) ≈ 7iM(n0)+7i18n2
0

Now substitute i = log2(n/n0) and observe,

7.7 The Unsuitability of Strassen’s Algorithm for Inversion 101

7
log2

n
n0 M(n0)+7

log2
n

n0 72n2
0

and since blog2 a = alog2 b, then we have

M(n)≈
(

n

n0

)log2 7

[M(n0)+72n0]

or finally M(n)∼ (n/n0)
log2 7M(n0).

7.6.2 Misunderstanding Strassen’s Matrix Inversion Formula

Strassen’s matrix inversion formula sometimes called SMIF for short, is the

following

A =

[
B C

D E

]

⇒ A−1 =

[
B−1 +B−1CS−1DB−1 −B−1CS−1

−S−1DB−1 S−1

]

where S = D−1−E−1CB−1, the Schur complement of A with respect to B (See Defi-

nition 40 on Page 115), provides a fast way of calculating matrix inverses. However,

this does not work for fields in which a singular B can be encountered. We will now

visit this point, in detail.

7.7 The Unsuitability of Strassen’s Algorithm for Inversion

It is important to note that Strassen’s famous paper [212] has three algorithms.

The first is a matrix multiplication algorithm, which we call “Strassen’s Algorithm

for Matrix Multiplication.” The second is a method for using any matrix multiplica-

tion technique as an oracle for matrix inversion, in asymptotically equal time (in the

big-Θ sense). We call this “Strassen’s Formula for Matrix Inversion.” The third is a

method for the calculation of the determinant of a matrix, which is of no concern to

us. Below, Strassen’s Formula for Matrix Inversion is analyzed, by which a system

of equations over a field can be solved.

Over all, the purpose of this section is to explain why these approaches to matrix

inversion can work over fields like C, R, or Q, as well as large finite fields, but be

totally out-of-the-question for GF(2), without serious modification. Nonetheless,

other authors have already figured out how to do the modification, and we list two

successful examples of that. Thus, if one wants to use Strassen’s Algorithms to get

a better exponent in GF(2)-linear algebra, one can, but only through modifications

on the scale of those listed here. This will become important when we discuss “the

Method of Four Russians for Matrix Inversion” in Section 9.8.1 on Page 152.

102 7 The Complexity of GF(2)-Matrix Operations

7.7.1 Strassen’s Approach to Matrix Inversion

Given a square matrix A, by dividing it into equal quadrants one obtains the

following inverse (A more detailed exposition is found in [63, Ch. 28], using the

same notation):

A =

[
B C

D E

]

⇒ A−1 =

[
B−1 +B−1CS−1DB−1 −B−1CS−1

−S−1DB−1 S−1

]

where S = E−DB−1C, which is the Schur Complement of A with respect to B (See

Definition 40 on Page 115).

One can easily check that the product of A and the matrix formula for A−1 yields

the identity matrix, either multiplying on the left or on the right. If an inverse for a

matrix exists, it is unique, and so therefore this formula gives the unique inverse of

A, provided that A is in fact invertible.

However, it is a clear requirement of this formula that B and S be invertible. Over

the real numbers, or other subfields of the complex numbers, one can show that if

A and B are non-singular, then S is non-singular also (See Lemma 41 on Page 115,

or alternatively [63, Ch. 28]). The problem is to guarantee that the upper-left sub-

matrix, B, is invertible. Strassen did not address this in the original paper, but the

usual solution is as follows (more details found in [63, Ch. 28]). First, if A is positive

symmetric definite (PSD), then all of its principal submatrices are positive symmet-

ric definite, including B. All positive symmetric definite matrices are non-singular,

so B is invertible. Now, if A is not positive symmetric definite, but is non-singular,

then note that AT A is positive symmetric definite and that (AT A)−1AT = A−1. This

also can be used to make a pseudoinverse for non-square matrices, called the Moore-

Penrose Pseudoinverse [179], [189], [43]. In short, by inverting AT A instead of A, all

the submatrices in the upper left will be invertible, throughout the recursive process.

However, the concept of positive symmetric definite does not work over a finite

field, because these fields cannot be ordered (in the sense of an ordering that respects

the addition and multiplication operations), and so it is not clear what positive is.

Observe the following counterexample,

A =







1 0 0 0

1 0 1 0

0 1 0 0

0 1 0 1







AT A =







0 0 1 0

0 0 0 1

1 0 1 0

0 1 0 1







Both A and AT A have det = 1, thus are invertible. Yet in both cases the upper-left

hand 2×2 submatrices have det = 0, and therefore are not invertible. Thus Strassen’s

formula for inversion is unusable without modification. The modification below is

from Aho, Hopcroft and Ullman’s book [13, Ch. 6] though it first appeared in [55].

7.7 The Unsuitability of Strassen’s Algorithm for Inversion 103

7.7.2 Bunch and Hopcroft’s Solution

Consider a matrix L that is unit lower triangular, and a matrix U that is unit upper

triangular. Then Strassen’s Matrix Inversion Formula indicates

L =

[
B 0

D E

]

⇒ L−1 =

[
B−1 0

−E−1DB−1 E−1

]

U =

[
B C

0 E

]

⇒U−1 =

[
B−1 −B−1CE−1

0 E−1

]

Note S becomes E in both cases, since either C or D is the zero matrix. Since

L (or U) is unit lower (or upper) triangular, then its submatrices B and E are also

unit lower (or upper) triangular, and therefore invertible. Thus Strassen’s Matrix

Inversion Formula over GF(2) will always work for unit lower or upper triangular

matrices.

It is well known that any matrix over any field has a factorization A = LUP

where P is a permutation matrix, L is unit lower triangular and U is unit upper

triangular [136, Lec. 21]. Once A is thus factored, the matrix inversion formula is

sufficient to calculate A−1. Aho, Hopcroft and Ullman [13, Ch. 6] give an algorithm

for computing the LUP-factorization over an arbitrary field, in time equal to big-Θ
of matrix multiplication, by use of a black-box matrix multiplication algorithm. We

call this algorithm AHU-LUP. The algorithm is described, in mathematical form,

in Section 8.2.2 on Page 111. Once the factorization of A is complete, Strassen’s

Matrix Inversion Formula can be applied to U and L. Note A−1 = P−1U−1L−1, and

inverting a permutation matrix is easy, because P−1 = PT . Another method is shown

in Algorithm 7 on Page 95.

7.7.3 Ibara, Moran, and Hui’s Solution

In [141], Ibara, Moran, and Hui show how to perform an LQUP-factorization

with black-box matrix multiplication. The LQUP-factorization is similar to the

LUP-factorization, but can operate on rank-deficient matrices. Therefore, if inter-

mediate submatrices are singular, there is no difficulty.

A factorization A = LQUP has L as lower-triangular, m×m, and U as upper-

triangular, m×n. The permutation matrix P is n×n as before. The added flexibility

comes from the matrix m×m matrix Q which is zero everywhere off of the main

diagonal, and whose main diagonal contains r ones followed by m− r zeroes. Here

r is the rank of A.

This is not to be confused with the QLUP factorization, where Q is a permutation

matrix, just as P is. In the QLUP, the P is for row swaps and the Q is for column

swaps. This occurs when one does Gaussian Elimination with full pivoting, instead

104 7 The Complexity of GF(2)-Matrix Operations

of Gaussian Elimination with partial pivoting, which would produce LUP. See also,

Section 7.1.3 on Page 91 and Section D.2 on Page 325.

This is how a singular (or a rank-deficient) A can be represented, while L, U , and

P can be kept invertible (or full-rank). The determinant of Q is zero if and only if

r < m. The algorithm is simpler than Bunch and Hopcroft, but is less amenable to

parallelization, as it requires copying rows between submatrices after cutting.

7
.7

T
h

e
U

n
su

itab
ility

o
f

S
trassen

’s
A

lg
o
rith

m
fo

r
Inv

ersio
n

1
0

5

Table 7.1 Algorithms and Performance, for m×n matrices

Algorithm Overdefined Square Underdefined Derivation

Matrix Inversion

M4RI† ∼ (1.5n3 +1.5n2m)/(log2 n) ∼ (3n3)/(log2 n) ∼ (6nm2−3m3)/(log2 m) see Section 9.5 on Page 146

Dense Gaussian Elim. ∼ 1.5n2m−0.75mn2 ∼ 0.75n3 ∼ 1.5nm2−0.75m3 see Section 7.5.3 on Page 97

Upper-Triangularization

Dense Gaussian Elim. ∼ 1.5n2m−0.75mn2−0.25n3 ∼ 0.5n3 ∼ 0.75nm2−0.25m3 see Section 7.5.3 on Page 98

M4RM† ∼ (4.5n3 +1.5n2m)/(log2 n) ∼ (6n3)/(log2 n) ∼ (4.5nm2 +1.5m3)/(log2 m) see Section 9.5.2 on Page 147

Back-Solve ∼ n2 ∼ n2 ∼ 2nm−m2 see Section 7.5.4 on Page 98

Algorithm Rectangular a×b by b× c Square n×n Derivation

Multiplication

M4RM† ∼ (3b2c+3abc)/(log2 b) ∼ (6n3)/(log2 n) see Section 9.3.1 on Page 138

Naı̈ve Multiplication ∼ 2abc ∼ 2n3 see Section 7.5.1 on Page 96

∗ Strassen’s Algorithm ∼M(n0)
(

3√
abc

n0

)log2 7

∼M(n0)(n/n0)
log2 7 see Section 7.6.1 on Page 101

* Here M(n0) signifies the time required to multiply an n0×n0 matrix in some “base-line” algorithm.

† These refer to the Method of Four Russians for Multiplication, or for Inversion.

Chapter 8

On the Exponent of Certain Matrix Operations

A great deal of research was done in the period 1969–1987 on fast matrix op-

erations, including [185, 212, 206, 213, 62]. Various proofs showed that many im-

portant matrix operations, such as QR-decomposition, LU-factorization, inversion,

and finding determinants, are no more complex than matrix multiplication, in the

big-Oh sense, see [13, Ch. 6] or [63, Ch. 28].

For this reason, many fast matrix multiplication algorithms were developed. Al-

most all were intended to work over a general ring. However, one in particular was

intended for boolean matrices, and by extension GF(2)-matrices, which was named

the Method of Four Russians, “after the cardinality and the nationality of its in-

ventors.”1 While the Method of Four Russians was conceived as a boolean matrix

multiplication tool, we show how to use it for GF(2) matrices and for inversion, in

Section 9.3 on Page 137 and Section 9.4 on Page 141.

Of the general purpose algorithms, the most famous and frequently implemented

of these is Volker Strassen’s 1969 algorithm for matrix multiplication in time n2.807.

However, many algorithms have a lower exponent in their complexity expression.

8.1 Very Low Exponents

The algorithms with exponents below O(n2.807) all derive from the following ar-

gument in so far as the author is aware. Matrix multiplication of any particular fixed

dimensions is a bilinear map from one vector space to another. The input space is of

matrices ⊕ matrices as a direct sum, and the output space is another matrix space.

Therefore, the map can be written as a tensor. By finding a shortcut for a particu-

lar matrix multiplication operation of fixed dimensions, one writes an upper bound

for the complexity2 of this tensor for those fixed dimensions. Specifically, Strassen

1 Quoted from Aho, Hopcroft & Ullman textbook [13, Ch. 6]. Later information demonstrated that

not all of the authors were Russians.
2 An element of a tensor space is a sum of simple tensors. Here, the complexity of a tensor is

the smallest number of simple tensors required. This is often called the rank of the tensor, but

© Springer Science + Business Media, LLC 2009

G.V. Bard, Algebraic Cryptanalysis, DOI: 10.1007/978-0-387-88757-9_8 107

108 8 On the Exponent of Certain Matrix Operations

performs 2×2 by 2×2 in seven steps instead of eight [212]. Likewise, Victor Pan’s

algorithm performs 70×70 by 70×70 in 143,640 steps rather than 343,000, for an

exponent of 2.795 [185, Ch. 1]. A summary of some of these algorithms and how

they are mapped into tensors, including in particular those of Schönhage [206], is

available in the form of a technical report by the author of this book [29].

One can now write upper bounds for the complexity of matrix multiplication

in general by extending the shortcut. Different papers execute this extension dif-

ferently, but usually the cross-over3 can be calculated explicitly. While the actual

crossover in practice might vary, these matrices have millions of rows and are infea-

sible. For example, for Schönhage’s algorithm at O(n2.70), the crossover is given by

[206] at n = 314 ≈ 4.78×106 rows, or 328 ≈ 22.88×1012 entries compared to naı̈ve

dense Gaussian Elimination. The crossover would be much higher versus Strassen’s

Algorithm or the Method of Four Russians.

Therefore, we have essentially three choices: algorithms of complexity equal to

Strassen’s exponent, of complexity equal to the Method of Four Russians, and algo-

rithms of cubic complexity. The purpose of the linear algebra part of this book is to

combine these effectively.

8.2 The Equicomplexity Theorems

The following is a series of theorems which prove that matrix multiplication,

inversion, LUP factorization, and squaring, are equally complex in the sense of big-

Θ . This implies that there is a real number, denoted ω , ironically called the exponent

of matrix multiplication considering how many operations it describes, such that all

these operations are Θ(nω). Several papers have been written trying to find tighter

upper bounds for this value [185, 212, 206, 213, 62]. Other work has tried to lower-

bound this value but lower bounds are not discussed here (but see [198]). In theory,

Coppersmith and Winograd still hold the record at ω ≤ 2.36, while in practice ω =
2.807 (Strassen’s algorithm) is the fastest algorithm in use [62, 212].

The theorems in this section have been known for a long time. In fact, all of them

are found in or can be derived from the union of the papers [212, 55, 180] and the

book [13, Ch. 6], except Theorem 31. The author cannot remember where he read

that theorem, but he is certain that he did not invent the proof. On the other hand,

the proofs of Theorem 42, Corollary 43, and Theorem 45 are new.

For now, we will exclude rings that are not fields. Suppose R is a ring that is not a

division ring. Then there exists an element z which has no inverse. What would the

inverse of the matrix zI be? Normally, diagonal matrices with non-zero entries on

other authors use the word “rank” differently. The rank of the tensor is directly proportional to the

complexity of the operation [213].
3 The cross-over point is the size where the new tensor has rank (complexity) equal to the naı̈ve

algorithm’s tensor. More simply, the naı̈ve algorithm and the algorithm being discussed, for this

size matrix, take very nearly the same running time. For sizes smaller than this, the naı̈ve algorithm

is better, and for larger matrices, the algorithm being measured is better.

8.2 The Equicomplexity Theorems 109

the main diagonal have inverses. Therefore, while these questions can be answered

(by excluding matrices with non-invertible determinant and other methods) we will

exclude them in this book. “Skew fields” are rings that are division rings but not

commutative, and thus not fields. An example is the quaternion field. These cases

are also beyond the scope of this book.

A brief notational comment is needed. One can sometimes show that a particular

algorithm is Θ(f (n)) or if not, then O(f (n)). But, the complexity of a problem is

defined as the complexity of the best algorithm for it, in terms of asymptotic running

time. Therefore showing an algorithm for solving a problem is either Θ(f (n)) or

O(f (n)), in both cases only proves that the problem is O(f (n)).
The definitions of Θ(f (n)), O(f (n)), and Ω(f (n)) can be found on page xxxiii,

but remember that any algorithm which is Θ(n3) is also Ω(n2) and O(n4).

8.2.1 Starting Point

Recall that the inverse or square of an n×n matrix, as well as the product of two

n× n matrices, will be an n× n matrix with n2 entries. Therefore, just outputting

the answer requires Ω(n2) time and these operations are Ω(n2). Likewise the LUP

factorization of a non-singular n×n matrix requires 3 matrices, each n×n, to write

down, so that problem also is Ω(n2).
This is in stark contrast to the determinant which is a single field element. How-

ever, we show in Theorem 57 on Page 132 that a Θ(f (n)) algorithm for finding the

determinant, provided f (n) is Ω(n2), will produce a Θ(f (n)) algorithm for matrix

multiplication in time O(f (n)). Furthermore, it will never be the case that f (n) fails

to be Ω(n2), because all the n2 inputs of the n× n matrix must be read in order to

calculate the determinant.

Because naı̈ve matrix multiplication is Θ(n3) (see Section 7.5.1 on Page 96) we

know that matrix multiplication and squaring are both O(n3). Likewise, because

Gaussian Elimination is Θ(n3) (see Section 7.5.3 on Page 96), we know that matrix

inversion or LUP factorization is O(n3) (since that algorithm can be used for both).

8.2.2 Proofs

Theorem 30. If there exists an algorithm for matrix inversion of unit upper (or

lower) triangular n× n matrices over the field F, in time Θ(nω), with ω ≤ 3, then

there is an algorithm for n×n matrix multiplication over the field F in time Θ(nω).

Proof. Let A,B be n×n matrices over the field F. Consider the matrix on the left in

the formula below:




I A 0

0 I B

0 0 I





−1

=





I −A AB

0 I −B

0 0 I





110 8 On the Exponent of Certain Matrix Operations

This matrix is 3n×3n upper-triangular and has only ones on the main diagonal,

and is also composed of entries only from F . Therefore its determinant is one and

it is non-singular. Its inverse can be calculated in time Θ(nω), and then the product

AB can be read in the “northeast” corner. ⊓⊔

The requirement of ω ≤ 3 was not quite superfluous. Any real r with ω ≤ r

would have done. If the matrix inversion requires f (n) time for an n× n matrix,

we need to know that f (n) is upper-bounded by a polynomial. Call the degree of

that polynomial d. This means that f (3n) ≤ 3d f (n) for sufficiently large n. Thus

f (3n) = Θ(f (n)).
For example, if ω = logn, or more precisely if f (n) = nlogn then this would be

problematic. In that case, f (3n) = 3log3n2log3 f (n) and therefore f (3n) 6= Θ(f (n)).

Theorem 31. If there exists an algorithm for squaring an n×n matrix over the field

F in time Θ(nω) with ω ≤ 3, then there is an algorithm for n×n matrix multiplica-

tion over the field F in time Θ(nω).

Proof. Let A,B be n×n matrices over the field F. Consider the matrix on the left in

the formula below:
[

A B

0 0

]2

=

[
A2 AB

0 0

]

This matrix is 2n× 2n and is also composed of entries only from F. Its square

can be calculated in time Θ(nω), and then the product AB can be read in the “north

east” corner. ⊓⊔

Again, the ω ≤ 3 was useful so that, since f (n) is upper-bounded by a polynomial

of degree d≤ 3, we can say that f (2n)≤ 2d f (n) for sufficiently large n and therefore

f (2n) = Θ(f (n)).

Theorem 32. If there exists an algorithm for multiplying two n× n matrices over

the field F in time Θ(nω) then there is an algorithm for n×n matrix squaring over

the field F in time Θ(nω).

Proof. A×A = A2 ⊓⊔

Theorem 33. If there exists an algorithm for multiplying two n×n matrices over the

field F, in time Θ(nω) then there is an algorithm for inverting an n× n unit upper

(or lower) triangular matrix over the field F, in time Θ(nω).

Proof. We will do the proof for the lower triangular case. It is almost unchanged for

the upper triangular case—just take the transpose of every matrix.

Observe,
[

A 0

B C

]−1

=

[
A−1 0

−C−1BA−1 C−1

]

8.2 The Equicomplexity Theorems 111

If the original matrix is unit lower triangular, so are A and C. Thus an n× n

unit lower triangular inverse requires two n/2×n/2 matrix multiplications and two

n/2× n/2 unit lower triangular matrix inverses. Let the time required for an n× n

lower triangular inverse be I(n) and for an n×n matrix product M(n).
We have

I(n) = 2I(n/2)+2M(n/2)

= 4I(n/4)+4M(n/4)+2M(n/2)

= 8I(n/8)+8M(n/8)+4M(n/4)+2M(n/2)

= 2iI
(n

2i

)

+2iM(
n

2i
)+ · · ·+2M(n/2)

= 2iI
(n

2i

)

+2ik(
n

2i
)ω + · · ·+2k(n/2)ω

= 2iI(2−in)+ knω

(
1− (2i)1−ω

2ω−1−1

)

Now we substitute i = logn, and observe that a 1×1 unit lower triangular matrix is

just the reciprocal of its only entry, and calculating that requires Θ(1) time. Then,

we have

= nI(1)+ knω

(
1−n1−ω

2ω −1

)

= nI(1)+
knω − kn

2ω −1

= Θ(n)+Θ(nω) = Θ(nω)

⊓⊔

The following can be found in [55] but in different notation.

Lemma 34 (Bunch and Hopcroft). Let m = 2t where t is a positive integer, and m <
n. Calculating the LUP factorization of a full-row-rank m× n matrix can be done

with two LUP factorizations of size m/2×n and m/2×n−m/2, two matrix products

of size m/2×m/2 by m/2×m/2 and m/2×m/2 by m/2× n−m/2, the inversion

of an m/2×m/2 triangular matrix, and some quadratic operations. Furthermore,

L, U, P will be each full-row-rank.

Proof. Step One: Divide A horizontally into two m/2×n pieces.

This yields A =

[
B

C

]

.

Step Two: Factor B into L1U1P1. (Note that L1 will be m/2×m/2, U1 will be

m/2×n, and P1 will be n×n.

Step Three: Let D = CP−1
1 . Thus D is m/2×n. Recall P−1 = PT for any permu-

tation matrix. This yields

A =

[
L1U1

D

]

P1

112 8 On the Exponent of Certain Matrix Operations

Step Four: Let E be the left-most m/2 columns of U1, and E ′ the remainder. Let

F be the left-most m/2 columns of D, and F ′ the remainder. Now compute E−1.

Since U1 is unit upper triangular then E is therefore also unit upper triangular, and

thus invertible.

This yields

A =

[
L1E L1E ′

F F ′

]

P1

which implies

A =

[
L1 0

0 Im/2

][
E E ′

F F ′

]

P1 (8.1)

Step Five: Consider T = D− FE−1U1. This can be thought of as G = F −
FE−1E = 0 and G′ = F ′−FE−1E ′, with T = G|G′ since D = F |F ′ and U1 = E|E ′,
where the | denotes concatenation. The matrices E ′,F ′,G′ are all n−m/2 columns

wide. In the algorithm, we need only compute G′ = F ′−FE−1E ′. Along the way

we should store FE−1 which we will have need of later. We have now

[
Im/2 0

−FE−1 Im/2

][
E E ′

F F ′

]

=

[
E E ′

0 G′

]

Step Six: Factor G′ = L2U2P2, and observe

[
Im/2 0

−FE−1 Im/2

][
E E ′

F F ′

]

=

[
E E ′

0 L2U2P2

]

(8.2)

Note that since G′ was m/2×n−m/2 wide, then L2 will be m/2×m/2 and U2

will be m/2×n−m/2 and P2 will be n−m/2×n−m/2.

Step Seven: Let

P3 =

[
Im/2 0

0 P2

]

so that P3 is a n×n matrix.

Step Eight: Calculate E ′P−1
2 . Recall P−1 = PT for any permutation matrix P.

This enables us to write

[
E E ′P−1

2

0 L2U2

][
Im/2 0

0 P2

]

︸ ︷︷ ︸

=P3

=

[
E E ′

0 L2U2P2

]

and breaking up the left-hand matrix yields

[
E E ′P−1

2

0 L2U2

]

=

[
Im/2 0

0 L2

][
E E ′P−1

2

0 U2

]

8.2 The Equicomplexity Theorems 113

and that yields
[

Im/2 0

0 L2

][
E E ′P−1

2

0 U2

]

P3 =

[
E E ′

0 L2U2P2

]

Substituting Equation 8.2 into this last equation we obtain

[
Im/2 0

0 L2

][
E E ′P−1

2

0 U2

]

P3 =

[
Im/2 0

−FE−1 Im/2

][
E E ′

F F ′

]

Because
[

Im/2 0

−FE−1 Im/2

]−1

=

[
Im/2 0

FE−1 Im/2

]

we can write

[
Im/2 0

FE−1 Im/2

][
Im/2 0

0 L2

][
E E ′P−1

2

0 U2

]

P3 =

[
E E ′

F F ′

]

and substitute this into Equation 8.1 to obtain

A =

[
L1 0

0 Im/2

][
Im/2 0

FE−1 Im/2

][
Im/2 0

0 L2

][
E E ′P−1

2

0 U2

]

P3P1

This now is sufficient for the factorization:

A =

[
L1 0

FE−1 L2

]

︸ ︷︷ ︸

=L

[
E E ′P−1

2

0 U2

]

︸ ︷︷ ︸

=U

P3P1
︸︷︷︸

=P

Since L1 and L2 are outputs of the factor algorithm they are unit lower triangular,

as is L. Likewise E and U2 are unit upper triangular, and so is U . The product of

two permutation matrices is a permutation matrix, as is P. Thus all three have full

row-rank.

Note that the matrix products and inverses involving permutation matrices are

quadratic or faster, as discussed in Section 7.4.2 on Page 94, and thus negligible.

⊓⊔

Lemma 35. Let A be a non-zero 1×n matrix, with a non-zero entry at i. Then L =
[1], U = [xi,x2,x3, . . . ,xi−1,x1,xi+1,xi+2, . . . ,xn] and P being the permutation matrix

which swaps columns i and 1, is a factorization A = LUP.

Proof. Obvious. ⊓⊔

Theorem 36. If matrix multiplication of two n×n matrices is O(nc1) over the field

F and matrix inversion of an n×n triangular matrix is O(nc2) over the field F then

the LUP factorization of an m×n matrix, with m being a power of two and m≤ n,

is O(nmax(c1,c2)), over the field F. Let 2≤ c1 ≤ 3 and 2≤ c2 ≤ 3.

114 8 On the Exponent of Certain Matrix Operations

Proof. Suppose matrix multiplication can be done in time O(nc1) and triangular

matrix inversion in time O(nc2). Let c = max(c1,c2). For sufficiently large n, the

time of either of these operations is ≤ knc for some real number k.

Also, since the time required to do an m/2×n LUP factorization is greater than

or equal to the time required to do an m/2× n−m/2 LUP factorization (because

the latter matrix is smaller), we will represent both as L(m/2,n), being slightly

pessimistic.

Since m < n in Lemma 34 the two matrix products and one triangular inversion

require at most 3knc time.

From Lemma 34, we have that

L(m,n) = 2L(m/2,n)+3knc

= 4L(m/4,n)+6k(n/2)c +3knc

= 8L(m/8,n)+12k(n/4)c +6k(n/2)c +3knc

= 16L(m/16,n)+24k(n/8)c +12k(n/4)c +6k(n/2)c +3knc

= 2iL(m/2i,n)+3knc

[
2i

(2i)c
+ · · ·+4/4c +2/2c +1/1c

]

= 2iL(m/2i,n)+3knc 2c

2c−2

Now let i = log2 m.

L(m,n) = mL(1,n)+
3knc2c

2c−2

Since L(1,n) is Θ(n) by Lemma 35, and that last term is O(nc) for any constant

c and constant k, we obtain that L(m,n) = O(nc). ⊓⊔

Theorem 37. If matrix multiplication of two n×n matrices is O(nc1), over the field

F, and triangular matrix inversion is O(nc2), over the field F, then the LUP factoriza-

tion of an m×n matrix, with m≤ n, is O(nmax(c1,c2)), over the field F. Let 2≤ c1 ≤ 3

and 2≤ c2 ≤ 3.

Proof. This is an identical claim to Lemma 36 except that the requirement that m

be a power of two has been dropped. If m is a power of two and m = n, factor as in

Lemma 34. If not, let m′ be the next power of two greater than or equal to both m

and n.

A = L1U1P1⇔
[

A 0

0 Im′−m

]

=

[
L1 0

0 Im′−m

][
U1 0

0 Im′−m

][
P1 0

0 Im′−m

]

by extending A diagonally as shown, we at most double the size of m. We therefore,

at worse, increase the running time eightfold, since using Gaussian Elimination for

LUP factorization is Θ(n3). ⊓⊔

8.2 The Equicomplexity Theorems 115

Theorem 38. If multiplying two n×n matrices is O(nc) over the field F, then invert-

ing an n×n matrix is O(nc) over the field F.

Proof. Because multiplying two n×n matrices is O(nc), we know by Theorem 33,

that inverting a unit lower triangular matrix is O(nc). Then via Theorem 37, an LUP

factorization can be computed in O(nc) time. If the original n×n matrix is A, then

A = LUP with L and U being unit lower/upper triangular. Thus we can invert them,

and inverting P is a quadratic operation (See Section 7.4.2 on Page 94). Surely then

A−1 = P−1U−1L−1, and we required a constant number of O(nc) operations. Thus

we have inverted A in O(nc) time. ⊓⊔

Theorem 39. If calculating the LUP factorization of a non-singular n×n matrix is

O(nc) over a field F, then finding the determinant of a non-singular n× n matrix

over a field F is also O(nc).

Proof. If A = LUP then det(A) = det(L)× det(U)× det(P). Note that det(L) is

the product of the entries of the main diagonal, just as is det(U), because both

matrices are triangular. The determinant of a permutation matrix is the sign of that

permutation, thus +1 or −1. This can be calculated in linear time by “undoing” the

permutation as a series of swaps, and counting the number required x, and returning

the determinant as (−1)x. ⊓⊔

Definition 40. If a matrix

A =

[
W X

Y Z

]

then the Schur Complement of A with respect to W is Z−Y (W−1)X .

Two interesting things about Schur Complements are worthy of note. First, the

matrix W can be any of the n− 1 submatrices rooted in the “northwest” corner,

ranging from the 1×1 submatrix of the upper-left most element to the n−1×n−1

submatrix consisting of all but the bottom row and rightmost column. The other

interesting fact is the following lemma. This short proof is due to Larry Washington,

though the result is certainly quite old.

Lemma 41. If a matrix

A =

[
W X

Y Z

]

is non-singular, and W is non-singular also, then the Schur Complement of A with

respect to W is non-singular.

Proof. [L. Washington] Observe,

[
I 0

−Y I

][
W−1 0

0 I

][
W X

Y Z

]

=

[
I W−1X

0 Z−YW−1X

]

and recall that the Schur complement of A with respect to W is S = Z−YW−1X .

Thus by taking the determinant of the above one obtains

116 8 On the Exponent of Certain Matrix Operations

(1)(detW−1)(detA) = (detS)

Therefore detS is non-zero. ⊓⊔

Theorem 42. If a matrix

A =

[
W X

Y Z

]

is non-singular, with W being non-singular also, then let W = L1U1P1, be an LUP

factorization, denote the Schur Complement of A with respect to W as S, and let

S = L2U2P2 be an LUP factorization. We have

A =

[
L1 0

Y P−1
1 U−1

1 L2

][
U1 L−1

1 XP−1
2

0 U2

][
P1 0

0 P2

]

Proof. Simply multiply those three matrices, and observe that one obtains A. ⊓⊔

Corollary 43. If a matrix

A =

[
U1 0

I Z

]

is non-singular, with U1 being unit upper-triangular, then the Schur Complement of

A with respect to U is I (See Definition 40 on Page 115); let Z = L2U2P2 be an LUP

factorization. Then an LUP factorization of A is

A =

[
I 0

U−1
1 L2

][
U1 0

0 U2

][
I 0

0 P2

]

Proof. This is Theorem 42, but with X = 0 and Y = I. Furthermore, since U1 is unit

upper triangular, it is non-singular. Also, the LUP factorization of U1 is (I)(U1)(I),
as the identity matrix I is both unit lower triangular and a permutation matrix. ⊓⊔

The inverse of a matrix (triangular or general), the product of two matrices, or the

square of a matrix are all unique specific matrices. But a matrix can have many LUP

factorizations. For any k 6= 0, one ambiguity is that if (L)(U)(P) = A then surely

(k−1L)(kU)(P) = A is also a factorization and both L and U remain triangular in

the correct directions. In GF(2), this is not a concern, as the only scalar not equal to

zero is one itself, and this presents no change to the factorization.

Outside of GF(2), one can divide each row i of L by Lii, and make a diagonal

matrix of the old Lii values. Likewise this can be done with U . If the product of the

diagonal matrices is D then LDUP has both L and U as non-singular lower/upper-

triangular matrices (as appropriate) and with 1’s on the main diagonals of L and of

U . It is curious to note that detL = detU = |detP|, and so detD = |detA|, and detD

is just the product of the diagonal entries.

Also, note Lii 6= 0 because if Lii = 0 then detL = 0 and thus det(LUP) = 0, or

detA = 0. But our original matrix is non-singular. Likewise, Uii 6= 0.

In the case of our particular problem, we wish not to have such a D, and to have

all ones on the main diagonal of L. Therefore, we should calculate D as above, and

8.2 The Equicomplexity Theorems 117

replace U with DU . This produces an LUP factorization, with precisely the required

properties.

These scalar multiplies are (all together) a quadratic time operation. Recall, no

matrix factorization is possible faster than in quadratic time since all n2 entries in

the original matrix must be read.

The following term, “non-permutative” is mine, but it gets us around an interest-

ing sticking-point.

Definition 44. Call an algorithm for LUP factorization of a matrix A “non-

permutative” if and only if the output A = LUP will have P = I in the cases of

those particular A where this is possible.

This topic is covered in [126, Ch. 3.2] in great detail. Over the real numbers,

all positive definite matrices have LUP factorizations with P = I. A simple matrix

without such a factorization is

[
0 1

1 0

]

All standard methods of calculating the LUP factorization over a finite field or the

rational numbers are “non-permutative”. Examples include Gaussian Elimination

or the Bunch-Hopcroft algorithm given above, or various block methods covered in

[126, Ch. 3.2], which fall back on Gaussian Elimination for small block sizes at the

end of the recursion.

A notable exception is Gaussian Elimination with Partial Pivoting, which will

usually produce a P. This is because, in iteration i, the pivot element is taken to

be the element of the active column i with the largest absolute value, excepting the

elements above Aii, which belong to rows that should not be touched at that point.

So unless, by coincidence, Aii is indeed the largest element each time, then P 6= I.

This is done to reduce rounding-error. For completeness, we should note that full-

pivoting produces a A = P1LUP2 factorization, and so is not relevant here.

And so we have noted that an LUP factorization is not unique and the inverse of

U1 is unique. At first this presents a paradox, because only one LUP factorization

will produce the inverse. However, as we began to discuss earlier, there are only

two points of ambiguity in an LUP factorization. The issue of moving constants

between L and U is of no consequence, because it is resolved by using a D matrix as

explained before. In the case of “non-permutative” algorithms, we are okay, because

we do not need a permutation matrix in either case, and so none will be used, and

the ambiguity is removed.

Theorem 45. If there exists a non-permutative algorithm for the LUP factorization

of a non-singular n×n matrix over a field F in time Θ(nc), then there is an algorithm

for inverting upper-triangular n×n matrices over the field F in time Θ(nc).

Proof. Given any unit upper triangular matrix U1, one can construct the matrix A as

used in the proof of Corollary 43. Then the LUP factorization of A will contain U−1

in the “southwest” corner of L. If U1 is an n×n matrix, A will be 2n×2n. This will

118 8 On the Exponent of Certain Matrix Operations

take Θ(2cnc) time. Since c≤ 3 (because LUP factoring via Gaussian Elimination is

Θ(n3)) and c≥ 2 (because all (n2 +n)/2 non-zero elements of U1 must be read into

the algorithm), we can say Θ(2cnc) = Θ(nc).
Note that if U1 were upper triangular but not unit upper triangular, then it would

be singular and so it would have no inverse, and thus no algorithm could invert it.

⊓⊔

We are almost finished. We now have

Theorem 46. If any of matrix inversion, LUP factorization, matrix multiplication,

triangular matrix inversion, or matrix squaring, of n× n matrices over the field

F, is Θ(nc), then all of these operations are Θ(nc). In addition, calculating the

determinant is O(nc).

Note that we will fix the determinant in a few more pages, namely Theorem 57

on Page 132.

8.3 Determinants and Matrix Inverses

In this section we will examine by far the deepest theorems in this chapter. While

we will have to cover a large amount of background information, on the other hand,

we will prove along the way the theorem of Baur and Strassen [39], as exposited

by Morgenstern [180], that finding all the partial derivatives of a function is only

5 times as complex as finding the value of it, in terms of floating-point operations,

regardless of the number of variables.

8.3.1 Background

One of the classical definitions of the determinant, as taught in many Ameri-

can high schools, is to “expand by cofactors.” The method is due to Pierre-Simon

Laplace, and so we shall call it Laplace’s Formula. This is computationally very in-

efficient (requiring n! field multiplications if implemented naı̈vely4) but it provides

a useful mechanism for proofs by induction.

To explain this, we require a definition of a matrix minor. The minor Mi j for an

n×n matrix A is an (n−1)× (n−1) matrix, whose entries are formed by deleting

the ith row and the jth column of A. Let mi j = detMi j.

Usually one is taught to expand a determinant as follows:

det(A) = a11m11−a12m12 +a13m13−a14m14 + · · ·+(−1)n−1m1n

4 If one stores the determinants of matrix minors as one computes them, then they can be re-

used. This is a huge savings in practice. But there are other, still faster ways of calculating the

determinant.

8.3 Determinants and Matrix Inverses 119

but actually one can expand on any of the rows or any of the columns. This is

important when taking the determinant by hand on an exam, especially if many of

the entries in some row or column are zero.

The reason this flexibility is possible is that swapping two rows or swapping two

columns only flips the sign of the determinant. We will state the following theorem,

but not prove it, as it is contained in many linear algebra texts (e.g. [131, Ch. 4.5]).

Theorem 47. [Laplace’s Formula]. Let Mi j signify the minor of A formed by delet-

ing row i and column j. Let mi j = detMi j. For an n×n matrix A, if n > 1

det(A) =
i=n

∑
i=1

(−1)m+iamimmi

for any 1≤ m≤ n. If n = 1, i.e. A is a 1×1 matrix, then det(A) = A11.

Note: This enables you to expand on any particular row m. If you want to expand

on a column, then note det(A) = det(AT), and so the process is identical.

Corollary 48. For any n, the determinant of an n×n matrix is a polynomial in terms

of the entries of the matrix.

Proof. If this were true for any n, then Laplace’s formula makes it true for n + 1.

And for a 1×1 matrix A, recall det(A) = A11, which is a polynomial in terms of the

entry of the matrix A. ⊓⊔

The determinant is a map from the set of n×n matrices over a ring R to the ring

R, and in fact, we just showed that it is a polynomial. As a polynomial, it has n2

variables, one for each entry in the n×n matrix. Therefore, we would be justified in

thinking of it as a map not from Mn(R)→ R but instead as a map Rn2 → R. There

would obviously be n2 partial derivatives. Using these, we could find ∇det(A),
which might be very useful. Therefore, let us take the partial derivative of Laplace’s

Formula. This will allow us to calculate (∂ det(A)/∂Ai j), the partial derivative of

the determinant of A in terms of the matrix element Ai j.

First assume n > 1. Let us consider the minors formed by expanding on row

i, namely Mi1, Mi2, . . . , Min. Surely Ai j does not appear in any of them, because

they are formed by deleting row i. This means that they are constants if everything

in A is held fixed except for Ai j. With this in mind, it becomes obvious that the

partial derivative in question is±detMi j =±mi j, as can be observed from Laplace’s

formula. Finally, if n = 1 then the determinant function is the identity function, so

the partial derivative in question is 1. Therefore, we have proven

Lemma 49. For any n×n matrix A, with n > 1, let Mi j signify the minor formed by

deleting row i and column j from the matrix A. Then

∂

∂Ai j

det(A) = (−1)i+ j detMi j

120 8 On the Exponent of Certain Matrix Operations

While ∇det(A) is a vector of length n2, with entries in R, it would be more

convienent to think of it as a matrix. Let us construct

Definition 50. Let A be an n×n matrix. The cofactor matrix of A is the n×n matrix

given by

C =





















∂
∂A11

det(A) ∂
∂A12

det(A) · · · ∂
∂A1n

det(A)

∂
∂A21

det(A) ∂
∂A22

det(A) · · · ∂
∂A2n

det(A)

...
...

. . .
...

∂
∂An1

det(A) ∂
∂An2

det(A) · · · ∂
∂Ann

det(A)





















Another interesting formula in linear algebra is

Lemma 51. For any matrix n×n matrix A,

ACT = det(A)I

where C is the cofactor matrix of A, and I is the n×n identity matrix.

Proof. For a proof, see any standard linear algebra text, including [222, Ch. 1.8].

⊓⊔
Of course, this means

Corollary 52. Given an invertible n×n matrix A, whose cofactor matrix is C,

A−1 =
1

det(A)
CT

which is useful. Also note that if A were not invertible, then det(A) = 0 and so its

reciprocal does not exist— thus the formula does not produce a wrong answer.

The transpose of the cofactor matrix AT in some older texts is called the “adjoint

matrix.” However, in physics, the adjoint of a matrix in Mn(C) is the complex conju-

gate of its transpose. This is a totally unrelated concept, and so to distinguish those

two ideas some authors call CT the “classical adjoint” or the “adjugate”. However,

this author prefers “the transpose of the cofactor matrix.” All this would seem rather

empty as an exercise if it were not for the following amazing result.

8.3.2 The Baur-Strassen-Morgenstern Theorem

In this section, we will prove that if one can evaluate a rational function in f

of n variables with t field operations, then one can evaluate it and all of its partial

8.3 Determinants and Matrix Inverses 121

derivatives in ≤ 5t field operations. Notice that this is shocking, because n does not

appear in the complexity bound. Intuitively, if there are very few steps compared to

the number of variables, then the partial derivatives are very simple. We shall seek

a rigorous proof.

This was first proven by Baur and Strassen in [39], but actually we will recount

here a proof by Morgenstern from [180].

8.3.2.1 The Computational Model

We will define the computation of f (x1, . . . ,xn), a particular rational function in

n variables over the field F as follows. There will be s operations, whose outputs are

g1,g2, . . . ,gs, and some of which are of the type gk = gi ⋆ g j, with i < k and j < k,

and where ⋆ can be any of the four field operations. Alternatively, we also permit

gk = LOAD(xi), where xi is one of the n inputs to the function, and gk = CONS(a)
where a ∈ F is some fixed constant. The final gs can be assumed to be the true

output of the function f . (In other words, we assume we are presented with a correct

algorithm for f). The issue of dividing by zero will be a concern later.

The algorithm will be defined as the sequence of g1,g2, . . . ,gz, each of which is

either a field operation, LOAD(xi), or CONS(c) for some c ∈ F. In the proof, we will

actually construct a new algorithm by appending additional steps gz+1,gz+2, . . . at

each inductive step.

We shall further specify p0, p1, . . . , pn which are positive integers. By pi = k

we intend to indicate that ∂ f (x1,x2, . . . ,xn)/∂xi = gk, and by p0 = k we intend to

indicate f (x1,x2, . . . ,xn) = gk. The purpose of these pk is that our language has no

output instruction.

Oddly enough, a model extremely similar to this one pops up also in crypto-

graphic proofs. An example is [12], where it is proven that breaking RSA in a cer-

tain sense is equivalent to factoring. Several papers cited by that one also use this

“generic ring model.”

8.3.2.2 Theorem and Proof

This result is non-trivial. The author recommends that the reader skim the proof

and the example given after it, and then read the proof carefully, and the example

carefully again.

Suppose now that of the s instructions in f we see that t ≤ s of them are neither

LOAD nor CONS. These are thus field operations. Furthermore, h≤ t are either mul-

tiplications or divisions, which in many fields are very time consuming operations.

(Thus, we denote them “h” for hard.)

Theorem 53. [Baur-Strassen] If a rational function f can be calculated in s in-

structions, of which t are field operations and of those, h are multiplications and

divisions, then f as well as all its partial derivatives can be calculated using at

most 5s instructions, 5t field operations, and 3h multiplications and divisions.

122 8 On the Exponent of Certain Matrix Operations

Proof. We shall now prove the inductive hypothesis:

Given that for all rational functions f over the field F having t ≤ tmax field oper-

ations, the partial derivatives of f can be calculated by an algorithm having ≤ 5tmax

field operations, it is the case that a rational function f over the field F having

tmax + 1 field operations can be calculated, along with all of its partial derivatives,

by an algorithm having ≤ 5tmax +5 field operations.

Assume we have an f , a rational function over the field F, such that it has s

instructions g1,g2, . . . ,gs and of these tmax + 1 are not LOAD nor CONS. Let ga be

the first instruction that is neither LOAD nor CONS, if there is at least one (if there

are none, we handle this as a special “base case” at the end).

Note that instruction a is either a sum, difference, product, or quotient. Therefore

we write ga = gi ⋆ g j so that i < a and j < a and also ⋆ is one of the four field

operations. But we said that a was the first instruction not a LOAD nor a CONS, and

so we know that gi and g j are each either xk for some input variable 1 ≤ k ≤ n, or

some constant from the field F.

Superfluous Operations:

First, we will remove a few annoying special cases that should not interest any-

one. If both of the operands (inputs) of the field operation are constants from the

field, we can remove the operation and replace it with a CONS, whose value is the

answer to that operation which is being deleted. For the case of division by zero, see

Section 8.3.2.4 on Page 131. The resulting computation is totally unchanged, but

has only tmax operations which are neither LOAD nor CONS, and so by the inductive

hypothesis, there exists an algorithm using 5tmax field operations that computes it

and its partial derivatives. Therefore we are done.

Second, perhaps both operands are input variables xi and x j, meaning that

gi = LOAD(xi) and g j = LOAD(x j). Now consider the possibility that i = j. If we

have ga = xi−xi then replace it with ga =CONS(0) and if we have ga = xi/xi then re-

place it with ga = CONS(1). The resulting computation is totally unchanged, but has

only tmax operations which are neither LOAD nor CONS, and so by the inductive hy-

pothesis, there exists an algorithm using 5tmax field operations that computes it and

its partial derivatives. Therefore we are done. We are forced to consider ga = xi +xi

(in fields of characteristic not 2) and ga = xixi (in all fields) as legitimate cases.

Now consider fields of characteristic two. In these fields, ga = xi + xi is replace-

able by ga = CONS(0), and so can be removed just like ga = xi− xi.

Useful Operations:

Now define f to be a rational function of n + 1 variables. Let its instructions be

identical to those of f , with the exception that ga is replaced by ga = LOAD(xn+1).
Note that

f (x1, . . . ,xn) = f (x1, . . . ,xn,G(x1, . . . ,xn))

8.3 Determinants and Matrix Inverses 123

where G is some rational function to be defined momentarily, will render f equiv-

alent to f provided G is correctly defined. In fact, G will be the operation we are

removing. And here, equivalent means that the two functions have the same output

for all possible x1,x2, . . . ,xn.

Note further that
∂ f

∂xi

=
∂ f

∂xi

+
∂ f

∂xn+1

∂G

∂xi

via the multivariate chain rule.

Of course, f has only tmax field operations and so by the inductive hypothesis

there exists an algorithm ∇ f such that the value of f is calculated, as well as all

of the partial derivatives of f , using ≤ 5tmax field operations. Using ∇ f we will

construct ∇ f by only appending instructions to ∇ f .

Notation

For notational simplicity, let gz be the final instruction of ∇ f . Let p0, . . . , pn refer

to the pointers to the outputs of ∇ f as discussed earlier, and let p′0, . . . , p′n refer to

the pointers to the outputs of ∇ f as we construct it.

Case 1: Sum of Two Distinct Variables

We have ga = xi + x j, and so G(x1, . . . ,xn) = xi + x j. In this case,

∂ f

∂xi

=
∂ f

∂xi

+
∂ f

∂xn+1
;

∂ f

∂x j

=
∂ f

∂x j

+
∂ f

∂xn+1

and so we add the following instructions:

gz+1 = gpn+1
+gpi

gz+2 = gpn+1
+gp j

and write p′i = z+1, p′j = z+2, as well as p′k = pk for all other p′.

Since ∇ f has ≤ 5tmax operations, then ∇ f has ≤ 5tmax + 2 ≤ 5(tmax + 1) opera-

tions, and we are done.

Case 2: Sum of a Variable with Itself

We have ga = xi +xi, and so G(x1, . . . ,xn) = 2xi. Either the field has characteristic

two, or it does not. If it does, this was handled in “superfluous operations” above.

This tedious detail now resolved, for all other fields

124 8 On the Exponent of Certain Matrix Operations

∂ f

∂xi

=
∂ f

∂xi

+2
∂ f

∂xn+1

and so we add the following instructions:

gz+1 = gpn+1
+gpn+1

gz+2 = gz+1 +gpi

and write p′i = z+2, as well as p′k = pk for all other p′.
Since ∇ f has ≤ 5tmax operations, then ∇ f has ≤ 5tmax + 2 ≤ 5(tmax + 1) opera-

tions, and we are done.

Case 3: Sum of a Variable and a Constant

We have ga = xi + c, and so G(x1, . . . ,xn) = xi + c. In this case,

∂ f

∂xi

=
∂ f

∂xi

+
∂ f

∂xn+1

and so we add the following instruction:

gz+1 = gpn+1
+gpi

and write p′i = z+1, as well as p′k = pk for all other p′.
Since ∇ f has ≤ 5tmax operations, then ∇ f has ≤ 5tmax + 1 ≤ 5(tmax + 1) opera-

tions, and we are done.

Case 4: Sum of a Constant and a Variable

Since addition is commutative in a field, then ga = c + xi can be handled identi-

cally to the previous case, ga = xi + c.

Case 5: Difference of Two Distinct Variables

We have ga = xi− x j, and so G(x1, . . . ,xn) = xi− x j. In this case,

∂ f

∂xi

=
∂ f

∂xi

+
∂ f

∂xn+1
;

∂ f

∂x j

=
∂ f

∂x j

− ∂ f

∂xn+1

and so we add the following instructions:

gz+1 = gpi
+gpn+1

gz+2 = gp j
−gpn+1

8.3 Determinants and Matrix Inverses 125

and write p′i = z+1, p′j = z+2, as well as p′k = pk for all other p′.

Since ∇ f has ≤ 5tmax operations, then ∇ f has ≤ 5tmax + 2 ≤ 5(tmax + 1) opera-

tions, and we are done.

Case 6: Deducting a Constant from a Variable

We have ga = xi− c, and so G(x1, . . . ,xn) = xi− c. In this case,

∂ f

∂xi

=
∂ f

∂xi

+
∂ f

∂xn+1

and so we add the following instruction:

gz+1 = gpn+1
+gpi

and write p′i = z+1, as well as p′k = pk for all other p′.
Since ∇ f has ≤ 5tmax operations, then ∇ f has ≤ 5tmax + 1 ≤ 5(tmax + 1) opera-

tions, and we are done.

Case 7: Deducting a Variable from a Constant

We have ga = c− xi, and so G(x1, . . . ,xn) = c− xi. In this case,

∂ f

∂xi

=
∂ f

∂xi

− ∂ f

∂xn+1

and so we add the following instruction:

gz+1 = gpi
−gpn+1

and write p′i = z+1, as well as p′k = pk for all other p′.
Since ∇ f has ≤ 5tmax operations, then ∇ f has ≤ 5tmax + 1 ≤ 5(tmax + 1) opera-

tions, and we are done.

Case 8: Product of Two Distinct Variables

We have ga = xix j, and so G(x1, . . . ,xn) = xix j. In this case,

∂ f

∂xi

=
∂ f

∂xi

+ x j

∂ f

∂xn+1
;

∂ f

∂x j

=
∂ f

∂x j

+ xi

∂ f

∂xn+1

and so we add the following instructions:

gz+1 = gpn+1
g j

126 8 On the Exponent of Certain Matrix Operations

gz+2 = gpi
+gz+1

gz+3 = gpn+1
gi

gz+4 = gp j
+gz+3

and write p′i = z+2, p′j = z+4, as well as p′k = pk for all other p′.

Since ∇ f has ≤ 5tmax operations, then ∇ f has ≤ 5tmax + 4 ≤ 5(tmax + 1) opera-

tions, and we are done.

Case 9: Product of a Variable with Itself

We have ga = xixi, and so G(x1, . . . ,xn) = x2
i . Thus we know

∂ f

∂xi

=
∂ f

∂xi

+2xi

∂ f

∂xn+1

and so we add the following instructions:

gz+1 = gi +gi

gz+2 = gz+1gpn+1

gz+3 = gz+2 +gpi

and write p′i = z+3, as well as p′k = pk for all other p′.
Since ∇ f has ≤ 5tmax operations, then ∇ f has ≤ 5tmax + 3 ≤ 5(tmax + 1) opera-

tions, and we are done.

Case 10: Product of a Constant and a Variable

We have ga = cx j, and so G(x1, . . . ,xn) = cx j, where c is gi, the result of a CONS

instruction at i. In this case,

∂ f

∂x j

=
∂ f

∂x j

+ c
∂ f

∂xn+1

and so we add the following instructions:

gz+1 = gpn+1
gi

gz+2 = gz+1 +gp j

and write p′j = z+2, as well as p′k = pk for all other p′.

8.3 Determinants and Matrix Inverses 127

Since ∇ f has ≤ 5tmax operations, then ∇ f has ≤ 5tmax + 2 ≤ 5(tmax + 1) opera-

tions, and we are done.

Case 11: Product of a Variable and a Constant

Since multiplication is commutative in a field, then ga = xic can be handled iden-

tically to the previous case, ga = cxi.

Case 12: Quotient of Two Distinct Variables

We have ga = xi/x j, and so G(x1, . . . ,xn) = xi/x j. In this case,

∂ f

∂xi

=
∂ f

∂xi

+
∂ f

∂xn+1

1

x j

;
∂ f

∂x j

=
∂ f

∂x j

− xi

x2
j

∂ f

∂xn+1

and so we add the following instructions:

gz+1 = gpn+1
/g j

gz+2 = gpi
+gpz+1

gz+3 = gz+1/g j

gz+4 = gz+3gi

gz+5 = gp j
−gz+4

and write p′i = z+2, p′j = z+5, as well as p′k = pk for all other p′.

Since ∇ f has ≤ 5tmax operations, then ∇ f has ≤ 5tmax + 5 ≤ 5(tmax + 1) opera-

tions, and we are done.

Case 13: A Constant Divided by a Variable

We have ga = c/x j, and so G(x1, . . . ,xn) = c/x j, again note c is the output of a

CONS instruction at step i. In this case,

∂ f

∂x j

=
∂ f

∂x j

− c

x2
j

∂ f

∂xn+1

and so we add the following instructions:

gz+1 = gpn+1
/g j

gz+2 = gz+1/g j

gz+3 = gz+2gi

gz+4 = gp j
−gz+3

128 8 On the Exponent of Certain Matrix Operations

and write p′j = z+4, as well as p′k = pk for all other p′.

Since ∇ f has ≤ 5tmax operations, then ∇ f has ≤ 5tmax + 4 ≤ 5(tmax + 1) opera-

tions, and we are done.

Case 14: A Variable Divided by a Constant

We have ga = xi/c, and so G(x1, . . . ,xn) = xi/c. As before, c is the output of a

CONS instruction at step j. In this case,

∂ f

∂xi

=
∂ f

∂xi

+
∂ f

∂xn+1

1

c

and so we add the following instructions:

gz+1 = gpn+1
/g j

gz+2 = gpi
+gpz+1

and write p′i = z+2, as well as p′k = pk for all other p′.
Since ∇ f has ≤ 5tmax operations, then ∇ f has ≤ 5tmax + 2 ≤ 5(tmax + 1) opera-

tions, and we are done.

The Base Case

The base case is zero field operations. Then the last operation of f is either LOAD

or CONS. By convention, we stated that the last operation of f is its output. Suppose

that the last instruction is step z.

If it is LOAD, then f (x1, . . . ,xn) = xi for some 1≤ i≤ n. Then ∇ f can be defined

as appending steps z+1 and z+2 as follows

gz = LOAD(xi)

gz+1 = CONS(1)

gz+2 = CONS(0)

with p0 = z, pi = z+1 and pk = z+2 for all other p.

Here, f has 0 field operations, and ∇ f has 0 field operations, and so the inequality

on t holds trivially.

If it is CONS, then f (x1, . . . ,xn) = c for some c ∈ F. Then ∇ f can be defined as

appending step z+1 as follows

gz = CONS(c)

gz+1 = CONS(0)

with p0 = z, and pk = z+1 for all other p.

8.3 Determinants and Matrix Inverses 129

Again, f has 0 field operations, and ∇ f has 0 field operations, and so the inequal-

ity on t holds trivially.

Considering s and h also

At all stages of the inductive proof, we maintained that if f has at most t field

operations and ∇ f has at most 5t field operations. Because we add at most only

5 field operations (e.g. in case 12), then ∇ f has at most 5t + 5 = 5(t + 1) field

operations. This is satisfactory because f has t +1 field operations.

Likewise, assume that f has at most s steps, and ∇ f has at most 5s steps. Because

we add at most only 5 steps, then ∇ f has at most 5s+5 = 5(s+1) steps.

Finally, if the instruction a were not a multiply/divide, (cases 1 to 7), then we

add no multiplies or divides. If a were a multiply/divide (cases 8 to 14), then we add

at most 3 multiplies/divides (e.g. in case 12). Thus by the above argument, if f has

≤ h multiplies/divides, then ∇ f will have ≤ 3h.

⊓⊔

8.3.2.3 A Running Example

Suppose we have the function f0 computed by g1 = LOAD(x1); g2 =
LOAD(x2); g3 = LOAD(x3); g4 = LOAD(x4); g5 = g1g2; g6 = g5 +g3; g7 =
g6/g4 which calculates the rational function

f0(x1,x2,x3,x4) =
x1x2 + x3

x4

Then the induction will proceed to consider the function f1 computed by

g1 = LOAD(x1); g2 = LOAD(x2); g3 = LOAD(x3); g4 = LOAD(x4); g5 =
LOAD(x5); g6 = g5 +g3; g7 = g6/g4 which calculates the rational function

f1(x1,x2,x3,x4,x5) =
x5 + x3

x4

Now the induction will proceed to consider f2 computed by g1 = LOAD(x1);
g2 = LOAD(x2); g3 = LOAD(x3); g4 = LOAD(x4); g5 = LOAD(x5); g6 =
LOAD(x6); g7 = g6/g4 which calculates the rational function

f2(x1,x2,x3,x4,x5,x6) =
x6

x4

Finally the induction will consider f3 computed by g1 = LOAD(x1);
g2 = LOAD(x2); g3 = LOAD(x3); g4 = LOAD(x4); g5 = LOAD(x5); g6 =
LOAD(x6); g7 = LOAD(x7) which calculates the rational function

f3(x1,x2,x3,x4,x5,x6,x7) = x7

130 8 On the Exponent of Certain Matrix Operations

Using the base case of the induction, we have ∇ f3 computed by g1 = LOAD(x1);
g2 = LOAD(x2); g3 = LOAD(x3); g4 = LOAD(x4); g5 = LOAD(x5); g6 =
LOAD(x6); g7 = LOAD(x7); g8 = CONS(1); g9 = CONS(0) along with p0 = 7,

p7 = 8 and pk = 9 for all other k. This computes the vector

∇ f3 = (0,0,0,0,0,0,1)

along with the value of f3.

Now we must refer to case 12, the worst of all 14 cases. We now have

∇ f2 computed by g1 = LOAD(x1); g2 = LOAD(x2); g3 = LOAD(x3); g4 =
LOAD(x4); g5 = LOAD(x5); g6 = LOAD(x6); g7 = g6/g4; g8 = CONS(1);
g9 = CONS(0); g10 = g8/g4; g11 = g9 + g10; g12 = g10/g4; g13 = g12g6;

g14 = g9− g13 along with p0 = 7, p6 = 11, p4 = 14 and pk = 9 for all other k.

Note p7 is no longer useful because x7 no longer exists. This computes the vector

∇ f2 = (0,0,0,
−x6

x2
4

,0,
1

x4
)

along with the value of f2.

The next case is much more merciful, using case 1. This yields ∇ f1 com-

puted by g1 = LOAD(x1); g2 = LOAD(x2); g3 = LOAD(x3); g4 = LOAD(x4);
g5 = LOAD(x5); g6 = g5 + g3; g7 = g6/g4; g8 = CONS(1); g9 = CONS(0);
g10 = g8/g4; g11 = g9 + g10; g12 = g10/g4; g13 = g12g6; g14 = g9 − g13;

g15 = g11 + g9; g16 = g11 + g9 along with p0 = 7, p4 = 14, p5 = 15, p3 = 16

and pk = 9 for all other k. Note p6 is no longer useful because x6 no longer exists.

This computes the vector

∇ f1 = (0,0,
1

x4
,
−x5− x3

x2
4

,
1

x4
)

along with the value of f1.

At long last, we nearing the end of our computation. We must use case 8, and

thus have ∇ f0 computed by g1 = LOAD(x1); g2 = LOAD(x2); g3 = LOAD(x3);
g4 = LOAD(x4); g5 = g1g2; g6 = g5 +g3; g7 = g6/g4; g8 = CONS(1); g9 =
CONS(0); g10 = g8/g4; g11 = g9 + g10; g12 = g10/g4; g13 = g12g6; g14 =
g9− g13; g15 = g11 + g9; g16 = g11 + g9 along with p0 = 7, p4 = 14, p3 = 16,

p1 = 18, p2 = 20. Note p5 is no longer useful because x5 no longer exists, and there

are no other pk. This computes the vector

∇ f0 = (
x2

x4
,

x1

x4
,

1

x4
,
−x1x2− x3

x2
4

)

which thankfully is correct, along with the value of f0.

We started with 3 field operations, 2 of which were “hard” (multiplies and di-

vides), plus 4 non-field operations (7 total steps). We finished with 10 field opera-

tions, 5 of which were “hard” (multiplies and divides), plus 6 non-field operations

(16 total steps).

8.3 Determinants and Matrix Inverses 131

8.3.2.4 Dividing by Zero

The behavior during a division by zero is left undefined in the above model. If

we are given a program for f that computes f on all points of its domain, then this

implies there are no superfluous divisions by zero possible. Of course, f does not

exist at its poles, and the program may divide by zero there.

Luckily, under this assumption, the generated program for ∇ f will never divide

by zero either (at any point in the domain of f). This is because a division operation

is only appended in cases 12, 13 and 14. In cases 12 and 13, we consider xi/x j

and c/x j, and the newly introduced divisions are by x j. Thus, at any value of x j in

the domain of f , we know x j 6= 0, because otherwise f would be dividing by zero,

which we assumed was not the case in the domain.

Likewise, in case 14, we consider xi/c, where c∈F. If c = 0 then f would always

divide by zero, and its domain would be empty. This would trivially satisfy the

requirement that ∇ f never divide by zero on a point in the domain of f .

Therefore we can thankfully conclude that division by zero is not of concern to

this model.

8.3.2.5 Impossibility of the Hessian

Given that we can find the gradient of a rational function in roughly 5 times as

many operations as evaluating the function, the next natural question is if we can

calculate the Hessian. Recall, the Hessian of an n variable function is the n× n

matrix A such that Ai j = (∂ 2 f)/(∂xi∂x j). Sadly, the answer is decidedly negative.

The following is from [180], in which Morgenstern accredits the proof to Stoss.

Lemma 54 (Stoss and Morgenstern). Let u = (u1,u2, . . . ,un) and v =
(v1,v2, . . . ,vn). Let X and Y be two n×n matrices, and let Z = XY . Let

f (u1,u2, . . . ,un,v1,v2, . . . ,vn,x11, . . . ,xnn,y11, . . . ,ynn) = uT XY v

then
∂ 2 f

∂ui∂v j

= Zi j

and furthermore f is a polynomial of degree 4, and f can be computed using at most

4n2−1 field operations, and 2n2 +n field multiplications (with 0 divisions).

Proof. Proof omitted. See [180] or calculate by hand. But note that uT XY v =
(XT u)T (Y v), and so two matrix-vector-products, followed by a dot-product, are all

that are required. A matrix-vector product requires n2 multiplies and n2− n addi-

tions. Then the dot product requires n multiplies and n−1 additions. The total is as

stated. ⊓⊔

That then implies

132 8 On the Exponent of Certain Matrix Operations

Lemma 55. Let m and b be any positive real numbers. If it is the case that all ratio-

nal functions which can be evaluated using at most t field operations, can each have

all of its second partial derivatives calculated in at most mt + b field operations,

then multiplying two n×n matrices will require ∼ 4mn2 field operations.

Proof. Proof is obvious. ⊓⊔

Finally, we conclude with

Theorem 56. Let m and b be any positive real numbers, and t any positive integer.

There is some rational function f which can be evaluated using at most t field oper-

ations, but it is impossible to calculate all of its second partial derivatives using at

most mt +b field operations.

Proof. Ran Raz and Amir Shpilka proved that matrix multiplication of two n× n

matrices is ω(n2) [199, 198]. Applying this to the contrapositive of Lemma 55 gives

the desired result. ⊓⊔

8.3.3 Consequences for the Determinant and Inverse

Now finally we can draw the last edge in our diagram.

Theorem 57. For any b ≥ 2, if finding the determinant of an n×n matrix is O(nb)
over the field F, then matrix inversion is O(nb) over the field F.

Proof. Suppose one could calculate the determinant of an n× n matrix in O(nb)
steps, and one is given an invertible n×n matrix A to invert.

Then one can find the cofactor matrix in O(nb) steps, using Theorem 53 on

Page 121. This is because the set of partial derivatives of the determinant are the

entries of the cofactor matrix, by Definition 50 on Page 120. With n2 field opera-

tions, one can divide each entry of the cofactor matrix by the determinant, and thus

obtain the matrix inverse via Fact 51 on Page 120. ⊓⊔

Chapter 9

The Method of Four Russians

As we’ve seen throughout this text, solving a linear system of GF(2) equations

lies at the heart of many cryptanalytic techniques. Some examples include stream

cipher cryptanalysis via the XL algorithm and its many variants [22, 23, 24, 25, 66,

67, 69, 79, 134, 82]; the algebraic attacks on the HFE public-key cryptosystem and

Quartz [65, 111, 78, 72, 77, 68, 70]; cryptanalysis of QUAD [42]; and solving the

matrix square root (provably NP-Hard for matrices over the boolean semiring) with

the XL algorithm [155].

Gaussian Elimination is a natural choice of algorithm for these problems. How-

ever, for dense systems, its cubic-time complexity makes it far too slow in practice.

The algorithm in this chapter achieves a speed-up of 3.36 times for a 32000×32000

GF(2)-matrix that is generated by random fair coins. The theoretical complexity of

the algorithm is O(n3/ logn), but it should be remembered that frequently n is the

cube or higher power of a parameter of the system being attacked, and so frequently

is in the millions.

At first it may seem surprising that so much attention is given to an algorithm

of complexity O(n3/ logn), since Strassen’s Algorithm for Matrix Multiplication

has complexity O(nlog2 7). But, in the end, we will combine the two algorithms, for

further improvement.

The algorithms in this chapter form the backbone of a linear algebra suite coded

by the author, and are now part of SAGE [7], an open source competitor to MAGMA

[2]. Some of the experiments cited in this chapter were performed by SAGE volun-

teers and staff, as noted in each case.

Performance is formally modeled, and some experiments are given to con-

firm/explain that reasoning. These times are obsolete however, as the work has pro-

gressed immensely, and three years have gone by so the computers are faster. Rather

than provide new timings, which would be obsolete in another three years, we refer

the reader to http://m4ri.sagemath.org/, where the very latest data will

be posted. The ratios of timings to each other should change much more slowly of

course, and so are informative.

The algorithm is named the Method of Four Russians for Inversion or M4RI, to

be pronounced “Mary”, in honor of the matrix multiplication algorithm from which

© Springer Science + Business Media, LLC 2009

G.V. Bard, Algebraic Cryptanalysis, DOI: 10.1007/978-0-387-88757-9_9 133

134 9 The Method of Four Russians

it emerged, the Method of Four Russians for Multiplication (M4RM). The “Four”

are Arlazarov, Dinic, Kronrod, and Faradzev [21], but later information showed that

not all are Russian1 .

9.0.4 The Fair Coin Assumption

Here we explore the effects of the algorithm on random matrices that are filled

with fair coins. Of course, one could also consider a weighted coin. But the fair

coin model is particularly appropriate to cryptography where the key is generated

by having an equal probability of one or zero. In the event that zero is very common

in the matrix, the matrix is called sparse, and this is discussed in Appendix D on

Page 323.

9.1 Origins and Previous Work

A paper published by Arlazarov, Dinic, Kronrod, and Faradzev [21] in 1970 on

graph theory contained an O((logd)(v3/ logv)) algorithm for finding the transitive

closure of a directed graph of v vertices and diameter d. This problem is of course

equivalent to exponentiation of a boolean matrix (the adjacency matrix) and the

community quickly realized that it was useful not only as a matrix squaring algo-

rithm, but also a matrix multiplication algorithm, because

[
A B

0 0

]2

=

[
A2 AB

0 0

]

and therefore squaring a matrix and matrix multiplication are equivalent (See also

Theorem 31 in Section 8.2.2). The running time of the algorithm so produced (given

in Section 9.3 on Page 137 below), is O(n3/ logn) for an n×n matrix. This equiva-

lence is not as inefficient as it might seem, as one can trivially calculate the upper-

right quadrant of the answer matrix without calculating the other three-fourths of

it. The matrix multiplication algorithm arising from this appears in Aho, Hopcroft,

and Ullman’s book, which gives the name “the Method of Four Russians. . . after the

cardinality and the nationality of its inventors” [13, Ch. 6]. While that text states

this algorithm is for boolean matrices, one can easily see how to adapt it to GF(2)
or even to GF(q) for very small q. We will discuss the GF(2) case in Section 9.3 on

Page 137 and the GF(q) case in Section 9.9 on Page 152.

1 Dan Bernstien has suggested the name “Kronrod’s Algorithm”, as the central theorem in the

[21] paper was attributed to Kronrod alone. However, many in the community already know this

algorithm as the Method of Four Russians and so we imagine that such a name change might create

confusion.

9.2 Rapid Subspace Enumeration 135

A similarly inspired matrix inversion algorithm was known anecdotally among

some cryptanalysts. The author would like to express gratitude to Nicholas Courtois

who explained the following algorithm to him after Eurocrypt 2005 in Århus, Den-

mark. It appears that this algorithm has not been published, either in the literature

or on the Internet. We call this newer algorithm the “Method of 4 Russians for In-

version” (M4RI) and the original as the “Method of 4 Russians for Multiplication”

(M4RM).

9.1.1 Strassen’s Algorithm

Strassen’s famous paper [212] has three algorithms—one for matrix multiplica-

tion, one for inversion, and one for the calculation of determinants. The last two

are for use with any matrix multiplication algorithm taken as a black box, and

run in time big-Theta of matrix multiplication. However, substantial modification

is needed to make these work over GF(2). Details can be found in Section 7.6.1 on

Page 100 but for now, recall the running time,

∼
(

n

n0

)log2 7

M(n0)

where M(n0) is the time required to multiply an n0× n0 matrix in the “fall-back”

algorithm. Strassen’s algorithm will repeatedly cut a matrix in half until the pieces

are smaller than n0. After this point, the tiny pieces are resolved with the fall-back

algorithm, and the answer is constructed. For this reason, if M(n0) is smaller with

M4RM rather than the naı̈ve algorithm, or likewise M4RI versus Gaussian Elimina-

tion, then Strassen’s Algorithm will be proportionally improved for all sufficiently

large matrices. Since n0 might be large, a speed-up of logn0 is not trivial.

This, in the end, is the reason we are interested in both M4RM and M4RI, that

they will be new “fall back” algorithms for the small parts during a Strassen recur-

sive call, instead of the naı̈ve algorithms.

9.2 Rapid Subspace Enumeration

The following step is crucial in the Method of Four Russians family of algo-

rithms. An n-dimensional subspace of a vector-space over GF(2) has 2n vectors in

it, including the all-zero vector. Given n basis vectors for that subspace, how can we

rapidly enumerate these 2n vectors?

Obviously, any vector in the subspace can be written as a linear combination of

the basis vectors. In GF(2), a linear combination is just a sum of a subset. There will

be 1 vector with 0 basis vectors in that subset, n vectors will be written as a “sum” of

one basis vector alone,
(

n
2

)
will be written as a sum of two basis vectors, . . . ,

(
n
n

)
= 1

136 9 The Method of Four Russians

will be written as a sum of all the basis vectors. Thus the expected number of basis

vectors in the sum for any particular subspace vector is given by

∑
i=n
i=0 i

(
n
i

)

2n
=

n
2
2n

2n
= n/2

Thus computing an arbitrary vector in the subspace requires n/2 = Θ(n) vector

adds, or Θ(n2) field additions. The entire subspace would require Θ(n22n) addi-

tions.

Instead, [21] contains an indirect description of a faster way. A k-bit Gray Code

is all 2k binary strings of length k, ordered so that each differs by exactly one bit

in one position from each of its neighbors. For example, one 3-bit Gray Code is

{000,001,011,010,110,111,101,100} [129]. Note that the Gray code is named for

Frank Gray of Bell Labs, not the color gray. Now consider the ith bit of this code

to represent the ith basis vector. This means that the all-zero string represents the

all-zero vector, and the all-ones string represents the sum of all the basis vectors.

The Gray Code will cycle through all 2n vectors in the subspace. Furthermore, each

sum can be obtained from the previous sum by only one vector addition.

The reason for this is that each codeword differs in exactly one bit from its pre-

decessor. Thus, given a codeword, suppose bit i is flipped to produce the next code-

word. If it was a 0→ 1 transition, adding the ith basis vector to the sum will produce

the correct new sum. But, if it was a 1→ 0 transition, adding the ith basis vector

to the sum will also produce the correct sum because x+x = 0 in any vector space

whose base field is of characteristic two. Thus, starting with the all-zero string, and

cycling through all 2n codewords, we can start with the all-zero vector, and cycle

through all 2n basis vectors, using only one vector-addition at each step.

This requires 2n− 1 vector additions instead of (n/2)2n, and is a speed-up of

Θ(n). Since a vector addition is a Θ(n) operation, this rapid subspace enumeration

method requires Θ(n2n) instead of Θ(n22n) bit-operations. Since there are n2n bits

in the output of the algorithm, we can see that this method is optimal in the sense

of Big-Θ . (In other words, an algorithm that found the basis vectors instantly would

still need Θ(n2n) bit operations to output all of them. For exact matrix memory

operation counts, observing that ∼ 3n matrix-memory operations are needed for

a vector addition (one read-read-write cycle for each position in the vector), or a

total of ∼ 3n(2n−1) operations, is the requirement to enumerate an n-dimensional

subspace. This is Θ(n2n) instead of Θ(n22n) for comparison purposes.

Note, the Gray Codes should be computed only once and stored for long term

use in a library. To enumerate the Gray Code can be done recursively. To output a

Gray Code of length ℓ+ 1, take a Gray Code of length ℓ, and place a 0 in front of

each word. Then relist the codewords in backwards order, this time prepending a 1

instead of a 0. Each word differs by its neighbor only in one slot and no possible

word is omitted or repeated.

9.3 The Four Russians Matrix Multiplication Algorithm 137

9.3 The Four Russians Matrix Multiplication Algorithm

This matrix multiplication algorithm is derivable from the original algorithm

published by Arlazarov, Dinic, Kronrod, and Faradzev [21], but does not appear

there. It has, however, appeared in books including [13, Ch. 6]—which is out of

print. Consider a product of two matrices AB = C where A is an a×b matrix and B

is a b× c matrix, yielding an a× c for C. In this case, one could divide A into b/k

vertical “stripes” A1 . . .Ab/k of k columns each, and B into b/k horizontal stripes

B1 . . .Bb/k of k rows each. (For simplicity assume k divides b). The product of two

stripes, AiBi is an a× b/k by b/k× c matrix multiplication, and yields an a× c

matrix Ci. The sum of all k of these Ci equals C.

C = AB =
i=k

∑
i=0

AiBi

The algorithm itself proceeds as given in Algorithm 13 on Page 137.

INPUT: A parameter k, a matrix A of size a×b, and a matrix B of size b×c, both divided each

into k stripes (see Section 9.3 on Page 137).

OUTPUT: A matrix C of size a× c, with C = AB.

1: Initialize the a× c matrix C with all zeroes.

2: For i = 1,2, . . . ,b/k do

1: Make a Gray Code table of all the 2k linear combinations of the k rows of the “stripe”

denoted Bi, via rapid subspace enumeration (see Section 9.2 on Page 135). Denote the xth

row Tx.

(Costs (3 ·2k−4)c reads/writes, see Stage 2, in Section 9.5 on Page 145).

2: For j = 1,2, . . . ,a do

1: Read the entries a j,(i−1)k+1,a j,(i−1)k+2, . . . ,a j,(i−1)k+k.

2: Let x be the k bit binary number formed by the concatenation of a j,(i−1)k+1, . . . ,a j,ik.

3: Add Tx to row j of C. (Costs 3c reads/writes).

Algorithm 13: Method of Four Russians, for Matrix Multiplication [after Arlazarov,

Dinic, Kronrod, and Faradzev]

9.3.1 Role of the Gray Code

The Gray Code step is useful for two reasons. First, if any particular linear com-

bination of the rows is required more than once, it is only computed once. That is an

important savings alone. Second, even if each linear combination of rows is required

exactly once, the Gray Code works ∼ n/2 times faster than the naı̈ve way of calcu-

lating those linear combinations (i.e. calculating them as needed, by direct addition,

never remembering them). But, for matrices of various sizes and various values of

138 9 The Method of Four Russians

k, the expected number of times any particular linear combination is required will

vary. Thus it is better to calculate the running time directly to see the effects of the

algorithm.

The innermost loop out requires k + 3c steps, and then the next requires (3 ·
2k− 4)c + a(k + 3c) steps. If the (3 · 2k− 4)c is puzzling, note that (2k− 1) vector

additions are required. This would normally require (3 · 2k − 3)c matrix-memory

read/writes. In the first iteration, we save an additional c by noting the first gray

code vector is always all zeroes and so we do not have to actually read it.

Finally the entire algorithm requires

b((3 ·2k−4)c+a(k +3c))

k
=

3b2kc−4cb+abk +3abc

k

matrix memory operations. Choose k = logb, so that 2k = b, and observe

3b2c−4cb+ab logb+3abc

logb
∼ 3b2c+3abc

logb
+ab

For square matrices this becomes ∼ (6n3)/(logn).

9.3.2 Transposing the Matrix Product

Since AB = C implies that BT AT = CT , one can transpose A and B, and trans-

pose the product afterward. The transpose is a quadratic, and therefore cheap, op-

eration. This has running time (3b2a + 3abc)/(logb) + cb (obtained by swapping

a and c in the earlier expression) and some algebraic manipulations show that

this more efficient when c < a, for any b > 1. Therefore the final complexity is

∼ (3b2 min(a,c)+ 3abc)/(logb)+ bmax(a,c). To see that the last term is not op-

tional, substitute c = 1, in which case the last term becomes the dominant term.

Thus we should add the step if c < a then return Prod(BT ,AT)T instead of

Prod(A,B).

9.3.3 Improvements

In the years since initial publication of M4RM, several improvements have been

made, in particular, in reducing the memory requirements [28, 205], and the base

fields upon which the algorithm can work [204].

9.3 The Four Russians Matrix Multiplication Algorithm 139

9.3.4 A Quick Computation

Suppose we start again with the complexity expression,

b((3 ·2k−4)c+a(k +3c))

k

but substitute a = b = c = n (i.e. a square matrix times a square matrix of the same

size). One obtains, after some algebraic manipulations,

∼ 3n22k +3n3

k

Then substitute k = γ logn and observe,

3n(2+γ) +3n3

γ logn

Immediately, we see that γ > 1 would cause the numerator to have a higher-

than-cubic term. That would make it inferior to even the naı̈ve algorithm. Further

observation shows that γ < 1 is inferior to γ = 1 because of the coefficient γ in the

denominator. Thus this quick analysis predicts k = logn is optimal, in theory. We

will perform experiments to obtain a precise optimization, in practice.

9.3.5 M4RM Experiments Performed by SAGE Staff

Martin Albrecht, a member of the SAGE Project, evaluated the author’s library

for inclusion in SAGE [7] back in 2006. The library is a Level 1, 2, and 3, BLAS

(Basic Linear Algebra System), and includes matrix multiplication and inversion via

the algorithms in this chapter, as well as LUP-factorization, and any matrix-vector

and vector-vector operations to support them. The tests were primarily for M4RI,

but also included tests for M4RM. The crossover between M4RM and naı̈ve appears

to be slightly larger than 6000×6000. The results are in Table 9.1 on Page 140.

A log-log plot showed that MAGMA is using Strassen’s Algorithm (or one with an

equal exponent to it). It should be noted that MAGMA is hand optimized in assembly

language, for several processors, including the Opteron, the processor used by the

tests. This was later confirmed by e-mails with a MAGMA developer.

Now since Strassen’s Algorithm has running-time Θ(n2.807) and we have

running-time Θ(n3/ logn), we know that there must be some point at which

MAGMA, which presumably uses Strassen paired with the naı̈ve algorithm, must

cross over (have equal running time to) our code. And it does, because the plots

cross each other.

But, we know that the running time of Strassen’s algorithm is

140 9 The Method of Four Russians

M(n)∼ (n/n0)
log2 7M(n0)

as shown in Section 7.6.1 on Page 101. Thus, for any given n0, such as for example

2000× 2000, if we are 3.825 times faster than naı̈ve, we then expect to be 3.825

times faster in general, for matrices larger than n0× n0. The 3.825 figure comes

from Table 9.9 on Page 157.

The numerically-intensive computer used in the tests was provided by the NSF

to SAGE. The following quotation can be found on the machine’s website.

This is computer [sic] for very open collaboration among SAGE developers and testing of

intense SAGE calculations. It is a special-purpose 64-bit computer built by Western Scien-

tific that has 64GB of RAM and 16 AMD Opteron cores. You can browse everybody’s home

directories. It was purchased for SAGE development using my NSF Grant (No. 0555776).

Also, due to the remarks in Section 9.5.1 on Page 147, an experiment was per-

formed to try k = 0.75log2 n instead of k = log2 n. The results show that this change

is not for the better.

Table 9.1 M4RM Running Times versus MAGMA

Matrix Size M4RM (SAGE) Strassen (MAGMA)

1000×1000 0.01 sec 0.02 sec

2000×2000 0.03 sec 0.16 sec

3000×3000 0.11 sec 0.24 sec

4000×4000 0.26 sec 0.48 sec

5000×5000 0.70 sec 1.03 sec

6000×6000 1.64 sec 1.67 sec

7000×7000 3.32 sec 2.61 sec

8000×8000 5.39 sec 3.34 sec

9000×9000 8.09 sec 5.45 sec

10000×10000 11.29 sec 7.28 sec

Table 9.2 Confirmation that k = 0.75log2 n is not a good idea.

k = logn k = 0.75logn

Matrix Size k time k time

8000 10 5.404 13 8.742

16000 10 46.310 14 64.846

32000 11 362.066 15 472.384

9.4 The Four Russians Matrix Inversion Algorithm 141

9.3.6 Multiple Gray-Code Tables and Cache Management

Additional work on this topic has been performed by Martin Albrecht, with

William Hart and the author of this work. One trick was invented by Martin Al-

brecht and is very worth mentioning.

For the moment, assume k is divisible by 4. Instead of using 1 Gray Code table

for k rows (size 2k) we could use 2 Gray Code tables of k/2 rows (size 2k/2×2) or

we could use 4 Gray Code tables of k/4 rows (size 2k/4× 4). The point of this is

that the memory usage is shrinking, and that raises the probability that everything

can fit in the L2 cache. In turn, that makes an enormous speed improvement. The

penalty is that instead of running one add operation in the very last step, we must

make 2 or 4 additions. This tradeoff can only be established experimentally, and we

have omitted a few details. More can be found in [15].

9.4 The Four Russians Matrix Inversion Algorithm

While the title of this section contains the words “matrix inversion”, the al-

gorithm which follows can be used either for matrix inversion or for triangula-

tion and back-substitution, by the same mechanism that this is also true for Gaus-

sian Elimination. As stated earlier, even if one has several b1,b2,b3, . . . ,bc, where

c = min(m,n) it is far more efficient to solve Axi = bi by appending the bi as

columns to the end of the m×n matrix A, and putting matrix A in unit upper trian-

gular form (UUTF). Then, one can solve for each xi by back substitution to obtain

the xi. (The back-solve is quadratic, thus cheap, step). The alternative is to invert A,

and Section 9.4.5 on Page 145 contains changes for that approach, by adjoining A

with an identity matrix and processing it into row reduced echelon form (RREF).

In Gaussian Elimination to UUTF of an m× n matrix, each iteration i operates

on the submatrix aii . . .amn, with the objective of placing a one at aii and a zero at

every other entry of the column i below row i, and leaving all above untouched. In

the Method of Four-Russians Inversion (M4RI) algorithm, k columns are processed

at once, producing a k×k identity matrix in the correct spot (aii . . .a(i+k−1),(i+k−1)),

with all zeros below it, and leaving the region above the submatrix untouched.

Each stage will now be described in detail.

9.4.1 Stage 1:

Denote the first column to be processed in a given iteration as ai. Then, perform

Gaussian elimination on the first 3k rows after and including the ith row to produce

an identity matrix in ai,i . . .a(i+k−1),(i+k−1), and zeroes in a(i+k),i . . .a(i+3k−1),(i+k−1)

(To know why it is reasonable to expect this to succeed, see Lemma 1 in Sec-

tion 9.5.3 on Page 148).

142 9 The Method of Four Russians

INPUT: A parameter k, and a matrix A of size m×n.

OUTPUT: The row-echelon form A.

1: For i = 1,k +1,2k +1,3k +1, . . .min(m,n) do

1: Perform Gaussian Elimination on rows i, i + 1, . . . , i + 3k− 1, to establish a k× k identity

matrix in cells aii . . .ai+k−1,i+k−1.

2: Construct a gray-code table to enumerate the 2k− 1 non-zero vectors in the subspace gen-

erated by rows i . . . i+ k−1.

3: For each row j = i+3k . . .m do

1: Read the entries in the k columns i, i+1, . . . , i+ k−1 of row j, and treat them as a k-bit

binary number x.

2: Add “the entry in the Gray Code table that has x as

a prefix,” to row j.

Algorithm 14: Method of Four Russians, for Inversion [Unknown]

9.4.2 Stage 2:

Construct a table consisting of the 2k elements of the vector subspace generated

by the first k rows among the 3k generated in the previous step, via the Gray Code

and rapid subspace enumeration. Because of the submatrix mentioned above, which

is equal to the identity matrix, we know these k rows are linearly independent as vec-

tors. Thus with only 2k vector additions (as explained in Section 9.2 on Page 136),

all possible linear combinations of these k rows have been precomputed.

9.4.3 Stage 3:

One can rapidly process the remaining rows from i+3k until row m (the last row)

by using the table. For example, suppose the jth row has entries a ji . . .a j,(i+k−1) in

the columns being processed. Selecting the row of the table that starts with this k-

bit string, and adding it to row j, will force the k columns to zero, and adjust the

remaining columns from i+k to n in the appropriate way, as if Gaussian Elimination

had been performed.

No searching of the table is required. Each prefix will always appear in the same

location, and so a dereferencing array can trivially render the act of finding the

correct table row into a simple lookup action.

The process is then repeated min(m,n)/k times. As each iteration resolves k

columns, instead of one column, one could expect that this algorithm is k times

faster. The trade-off for large k is that Stage 2 can be very expensive. It turns out

(see Section 9.6 on Page 150) that selecting the right value of k is critical.

9.4 The Four Russians Matrix Inversion Algorithm 143

9.4.4 A Curious Note on Stage 1 of M4RI

We have shown (See Section 9.5.3 on Page 148) that a 3k× k submatrix, begin-

ning at ai,i and extending to ai+3k−1,i+k−1 is very unlikely to be singular. Therefore,

the Gaussian Elimination (which is done on the rows i, . . . , i + 3k− 1) will be suc-

cessful and will produce a k× k identity matrix. But, this is not the whole story.

With probability around 28.8%, the 3k×3k matrix will be full-rank, and so actually

an identity matrix of size 3k× 3k will be available. (Recall this is the probability

that a sufficiently large random GF(2)-matrix will be invertible). With probability

57.6%, the matrix will have nullity one (proof given as Theorem 58 on Page 143

below) and so a (3k− 1)× (3k− 1) identity matrix (with one row of zeroes under

it) will be present. This means that the next two iterations of the algorithm will have

essentially no work to do at all in Stage 1, with probability around 86.6% or so.

The cases nullity 2, nullity 3, and nullity 4 absorb nearly all remaining probability

(proved in Theorem 59 on Page 144 and shown in Table 9.3 on Page 145), and the

probability that “only” 3k×2k will be in the form of an identity matrix (with k rows

of zeroes underneath) is already approaching zero as ℓ gets large, with a probability

that can be calculated using the aforementioned theorem. Therefore, Stage 1’s cost

is actually near to one-third its listed value. Since Stage 1 is not significant in the

final complexity, we do not carry this analysis further.

The reader may wish to review Theorem 25 on Page 84 before proceeding.

Theorem 58. The probability that an n× n GF(2)-matrix, filled with the out-

put of independent fair coins, is nullity 1 equals (1− 2−n)(1− 2−n+1) · · ·(1−
2−n+n−2)(1− 2−n). Also for large n, the ratio of the number of nullity one n× n

matrices to the number of nullity zero matrices is ∼ 2.

Proof. Let A be a matrix that is n×n and nullity one. The null space contains 21 = 2

vectors. Since the null space always contains the zero vector, it therefore contains

one other vector v.

There is a change-of-basis matrix B such that Bv = e1 = {1,0, . . . ,0}, or v =
B−1e1. Since Av = 0 then AB−1e1 = 0 also and therefore BAB−1e1 = 0. Note that

B, by virtue of being an n× n change-of-basis matrix, is non-singular, and so B−1

exists and is square, with the “correct” size.

The fact that BAB−1e1 = 0 means that the first column of BAB−1 is all zeroes.

Note that BAB−1 and A have the same characteristic polynomial, nullity, rank, de-

terminant, etc. . . .

The first column is all zeroes, but the rest of the matrix has to be full-rank for the

nullity to be exactly one, and so the second column can be anything but all zeroes,

the third column cannot be the second column nor all-zeroes, the fourth column

cannot be the third, the second, nor their sum, and so on. For the ith column, we

have ruled out the span of the i−2 dimensional subspace generated by the previous

i−1 columns.

The original v in the null-space could be any non-zero vector, or 2n−1 choices.

We have therefore,

144 9 The Method of Four Russians

Pr[nullity = 1] =
(1)(2n−1)(2n−2) · · ·(2n−2n−2)

2n2
(2n−1)

= (1−2−n)(1−2−n+1) · · ·(1−2−2)(1−2−n)

As one can see, compared to the nullity zero case, we have removed a (1−2−1)
term and replaced it with an extra 1− 2−n term, which asymptotically doubles the

whole product. ⊓⊔

Theorem 59. If A is an n×n matrix filled with fair coins, the probability that it has

nullity k is given by

(1−2−n)(1−2−n+1) · · ·(1−2−n+k−1)× (1−2−n)(1−2−n+1) · · ·(1−2−k−1)

(2k−1)(2k−2) · · ·(2k−2k−1)

Proof. Suppose the nullity of A is k and thus the nullspace of A has 2k−1 non-zero

vectors in it. Choose k of them, v1, . . . ,vk such that they are linearly independent.

There is a change-of-basis matrix B that maps the vectors so that Bvi = ei, or

vi = B−1ei, for i ∈ {1, . . . ,k}. This further implies that 0 = Avi = AB−1ei for i ∈
{1, . . . ,k} and thus BAB−1ei = 0. This means that the first k columns of BAB−1 are

all zero.

The remaining n−k columns have the following properties, because the remain-

der of the matrix must be full rank. The first remaining column cannot be all zeroes,

the next cannot be the first nor all zeroes, and so forth. For i > k +1, the ith column

cannot be in the (i− k− 1)-dimensional subspace generated by the previous i− 1

columns, of which k are all-zero and i− k−1 are non-zero.

Obviously for the non-zero columns we have (2n− 1)(2n− 2) · · ·(2n− 2n−k−1)
choices, since they need to be non-zero and linearly independent. For the vectors in

the null space, we have (2n− 1)(2n− 2) · · ·(2n− 2k−1) choices, but a permutation

of those vectors produces the same final matrix for a different value of B, so a

correction factor is needed.

Basically, the v1, . . . ,vk was a basis for the nullspace, and nothing more. So, the

correction factor to prevent overcounting of the same A generated by different B is

just the number of bases of an n-dimensional space. The first vector could be any

one of the 2k−1 non-zero vectors in the space. The second vector can be anything

but the first or zero, and the third can be anything except zero, the first, the second,

or their sum. The ith can be anything not in the i− 1 dimensional subspace of the

previous i−1 vectors, which is 2k−2i−1. Essentially, there are |GLk(GF(2))| ways

to choose a basis.

Finally, we have:

Pr[A ∈Mn(GF(2));nullity(A) = k] =

=
(1−2−n)(1−2−n+1) · · ·(1−2−n+k−1)(1−2−n)(1−2−n+1) · · ·(1−2−k−1)

(2k−1)(2k−2) · · ·(2k−2k−1)

=

(

∏
i=k
i=1 1−2−n+i−1

)(

∏
i=n−k
i=1 1−2−n+i−1

)

(

∏
i=k
i=1 2k−2i−1

)

9.5 Exact Analysis of Complexity 145

and that is what we wanted to prove. ⊓⊔

Table 9.3 Probabilities of a Fair-Coin Generated n× n matrix over GF(2), having

given Nullity

nullity n = 1000 n = 8 n = 3 n = 2

0 0.28879 0.28992 168/512 6/16

1 0.57758 0.57757 294/512 9/16

2 0.12835 0.12735 49/512 1/16

3 5.2388×10−3 5.1167×10−3 1/512 0

4 4.6567×10−5 4.4060×10−5 0 0

5 9.6914×10−8 8.5965×10−8 0 0

6 4.8835×10−11 3.7903×10−11 0 0

7 6.0556×10−15 3.5250×10−15 0 0

8 1.8625×10−19 5.4210×10−19 0 0

9.4.5 Triangulation or Inversion?

While the above form of the algorithm will reduce a system of linear equations

over GF(2) to unit upper triangular form, and thus permit a system to be solved

with back substitution, the M4RI algorithm can also be used to invert a matrix, or

put the system into reduced row echelon form (RREF). Simply run Stage 3 on rows

0 · · · i− 1 as well as on rows i + 3k · · ·m. This only affects the complexity slightly,

changing the 2.5 coefficient to 3 (calculation done in Section 9.5.2 on Page 147). To

use RREF to invert a matrix, simply concatenate an identity matrix (of size n× n)

to the right of the original matrix (of size n×n), producing a n×2n matrix. Using

M4RI to reduce the matrix to RREF will result in an n×n identity matrix appearing

on the left, and the inverse matrix on the right.

9.5 Exact Analysis of Complexity

Assume the matrix is m× n and for simplicity that k divides n and m. To calcu-

late the cost of the algorithm one need only tabulate the cost of each of the three

stages, which will be repeated min(m,n)/k times. Let these stages be numbered

i = 1 . . .min(m,n)/k.

The first stage is a 3k× (n− ik) underdefined Gaussian Elimination (RREF),

which requires∼ 1.5(3k)(n− ik)2−0.75(3k)3 matrix memory operations (See Sec-

tion 7.5.3 on Page 96). This will be negligible.

146 9 The Method of Four Russians

The second stage, constructing the table, requires 3(n− ik−k) steps per row. The

first row is all zeroes and can be hard-coded, and the second row is a copy of the

appropriate row of the matrix, and requires (n− ik− k) reads followed by writes.

Thus one obtains 2(n− ik− k) + (2k− 2)(3)(n− ik− k) = (3 · 2k− 4)(n− ik− k)
steps.

The third stage, executed upon (m− ik− 3k) rows (if positive) requires 2k +
3(n− ik−k) reads/writes per row. This becomes (m− ik−3k)(3n−3ik−k) matrix

memory operations in total, when that total is positive. For example, in a square

matrix the last 2 iterations of stage 1 will take care of all of these rows and so

there may be no work to perform in Stage 3 of those iterations. To denote this, let

pos(x) = x if x > 0 and pos(x) = 0 otherwise.

Adding steps one, two, and three yields

i=ℓ/k−1

∑
i=0

1.5(3k)2(n− ik)−0.75((3k)3)+(3 ·2k−4)(n− ik− k)+

(pos(m− ik−3k))(3n−3ik− k)

=

[
i=ℓ/k−3

∑
i=0

1.5(3k)2(n− ik)−0.75((3k)3)(3 ·2k−4)(n− ik− k)+

(m− ik−3k)(3n−3ik− k)]

+1.5(3k)2(n− ℓ+2k)−0.75((3k)3)(3 ·2k−4)(n− ℓ+ k)

+1.5(3k)2(n− ℓ+ k)−0.75((3k)3)(3 ·2k−4)(n− ℓ)

≤ ∼ 1

4k

[

2k(−6kℓ+12nℓ−6ℓ2)−6mℓ2−6nℓ2 +4ℓ3 +12mnℓ
]

Recalling ℓ = min(m,n) and substituting k = logℓ and thus 2k = ℓ, we obtain,

∼ 1

4logℓ

(
6nℓ2−2ℓ3−6mℓ2 +12mnℓ

)

Thus for the over-defined case (ℓ = n) this is (4n3 + 6n2m)/(4logn), and for

the under-defined case (ℓ = m) this is (18nm2 − 8m3)/(4logm), and for square

(5n3)/(2logn).

9.5.1 An Alternative Computation

If we let n = 2m, which would be the case for inverting a square matrix, we

obtain:

∼ 1

4k

[

2k
(
−6km+18m2

)
+10m3

]

Now substitute

9.5 Exact Analysis of Complexity 147

k = γ logm+δ

and observe,

∼ 2δ

γ logm+δ

[
18m2+γ

]
+

10m3

γ logm+δ

from which it is clear that γ > 1 would result in a higher-than-cubic complexity.

Also, γ < 1 is suboptimal because of the gamma in the denominator of the first

term. As for δ , the picture is less clear. But what is interesting is that experimenta-

tion shows γ ≈ 0.75 is around best in practice. The net result is that the computa-

tional cost model which I propose is approximate at best, due, perhaps, to the cache

consequences which the model cannot consider.

9.5.2 Full Elimination, not Triangular

Like Gaussian Elimination, the M4RI algorithm can be used not only to reduce

a matrix to Row-Echelon Form (making it upper triangular if it were full-rank),

but to Reduced Row-Echelon Form (making the left-hand part of the matrix the

m×m identity matrix if it were full-rank). The only change is that in Step 3, we

process all rows other than the 3k rows processed by Gaussian Elimination. Before,

we only processed the rows that were below the 3k rows, not those above. Thus

instead of m− 3k− ik row additions in stage 3, we will require m− 3k. Otherwise

the calculation proceeds exactly as in Section 9.5 on Page 146.

i=ℓ/k−1

∑
i=0

1.5(3k)2(n− ik)−0.75((3k)3)+(3 ·2k−4)(n− ik− k)+

(pos(m−3k))(3n−3ik− k)

=
ℓ

8k

(

−14n+24mn+4mk−72kn−12k2−162k3 +2k(24n−12k−12ℓ)

+25k +7ℓ−12mℓ+36ℓk)

∼ ℓ

8k

(

24mn−12mℓ+2k(24n−12ℓ)
)

As before, if k = log2 ℓ, then

∼ 1

2log2 ℓ

[
6mnℓ−3mℓ2 +6nℓ2−3ℓ3

]

and thus if ℓ = n (the over-defined case), we have 3mn2+3n3

2log2 n
and if ℓ = m (the under-

defined case), we have 6m2n−3m3

log2 m
. In the case that m = n (the square case), we have

148 9 The Method of Four Russians

3n3/ log2 n. As specified in Section 9.4.5 on Page 145, this is just the same formula

with 3 taking the place of 5/2.

9.5.3 The Rank of 3k Rows, or Why k + ε is not Enough

The reader may be curious why 3k rows are selected instead of k rows at the small

Gaussian Elimination step (Stage 1 of each iteration). Normally to guarantee non-

singularity, a linear system with k variables and an abundance of equations is solved

with k plus some small integer number of equations, the others being discarded as

redundant. Of course, all equations must be checked after the solution is found, to

verify that it is indeed a solution. In fact, Theorem 59 on Page 144 encourages this

by saying that nullity greater than 8 is quite rare.

However, this does not work in the M4RI algorithm, because ℓ/ logℓ submatrices

must be reduced by Gaussian Elimination, and the algorithm fails if any one of these

submatrices is singular.

The answer is that the probability of k vectors of length 3k having rank k is

very high, as proved below. The small Gaussian Elimination will fail to produce the

identity matrix followed by rows of zeroes if and only if this submatrix is not of full

rank.

Lemma 60. A random GF(2) matrix of dimension 3k× k, filled by fair coins, has

full rank with probability ≈ 1−2−2k.

Proof. Consider the columns of the matrix as vectors. One can attempt to count the

number of possible full rank matrices. The first vector can be any one of 23k−1 non-

zero length 3k vectors. The second one can be any non-zero vector distinct from the

first, or 23k− 2 choices. The third one can be any non-zero vector not equal to the

first, the second, or their sum, or 23k− 4. The ith vector can be any vector not in

the space spanned by the previous i−1 vectors (which are linearly independent by

construction). Thus 23k− 2i−1 choices are available. Therefore, the probability of

any k vectors of length 3k being linearly independent is

∏
i=k
i=1 (23k−2i−1)

(23k)k
=

i=k

∏
i=1

(1−2i−12−3k)

≈ 1−
i=k

∑
i=1

2i−12−3k

≈ 1−2−3k(2k−1)

≈ 1−2−2k

and this is the desired result. ⊓⊔
Even in the case k = 5, the actual probability of less than full rank is 9.46×10−4,

and the above formula has a relative error of 3.08×10−6, and is even more accurate

9.6 Experimental and Numerical Results 149

for higher k. Also, note when k = c logℓ then the probability of full rank is 1−ℓ−2c.

Since there will be (ℓ)/(logℓ)− 1 iterations, the probability of even one failure

during all passes is approximately 1/(ℓ2c−1 logℓ), which is very low, considering

that ℓ may approach the millions.

Note that even if 2k× k were chosen, then the probability of failure over the

whole algorithm would be 1/ logℓ, which is non-trivial. In practice, when k was

significantly lower than logℓ, the algorithm would abort very frequently, whereas

it never aborted in any of the experiments when k was set near logℓ. (Aborts are

marked with a star in Table 9.6 on Page 155).

9.5.4 Using Bulk Logical Operations

The above algorithm can be improved upon if the microprocessor has instructions

for 32-bit (or even 64-bit) logical operations. Stages 2 and 3 essentially consist of

repeated row additions. The matrix can be stored in an 8-bits per byte format instead

of the 1-bit per byte format, and long XOR operations can perform these vector

additions. Stage 1 is unaffected. However, stages 2 and 3 can proceed 32 or 64

times as fast as normal if single-instruction logical operators are available in those

sizes, as they are on all modern PCs. Additional details can be found in [221, Ch.

5], in the context of a 32-bit parity check done in parallel. Since only stages 2 and

3 were non-negligible, it is safe to say that the algorithm would proceed 32 or 64

times faster, for sufficiently large matrices.

Experimentally the author found that the speed-up varied between 80% to 95% of

this figure, depending on the optimization settings of the compiler chosen. However,

there is absolutely no reason not to do this all the time, thus by using unsigned

long long in the C language, the vector additions were always performed 64

entries at one time in the final library.

9.6 Experimental and Numerical Results

Five experiments were performed. The first was to determine the correct value

of k for M4RI. The second was to determine the running time of both M4RI and

Gaussian Elimination. In doing these experiments, we noted that the optimization

level of the compiler heavily influenced the output. Therefore, the third experiment

attempted to calculate the magnitude of this influence. The fourth was to determine

if a fixed k or flexible k was superior for performance. The fifth was a spreadsheet

calculation to find an optimal k = c1 + c2 logn, given the equations for the running

time of a square matrix for the algorithm, found in Section 9.5.1 on Page 146.

The specifications of the computer on which the experiments were run is given

in Section 9.3.5 on Page 140. Except as noted, all were compiled under gcc with

the highest optimization setting (level three). The experiments consisted of generat-

150 9 The Method of Four Russians

ing a matrix filled with fair coins, and then checking the matrix for invertibility by

attempting to calculate the inverse using M4RI to RREF. If the matrix was singular,

a new matrix was generated. If the matrix was invertible, the inverse was calculated

again using Gaussian Elimination to RREF. These two inverses were then checked

for equality, and finally one was multiplied by the original to obtain a product ma-

trix which was compared with the identity matrix. The times were calculated using

clock() from time.h built into the basic C language. The functions were all

timed independently, so extraneous operations like verifying the correctness of the

inverse would not affect running time (except possibly via cache coherency but this

is both unlikely and hard to detect). No other major tasks were being run on the

machine during the experiments, but clock() measures user-time and not time in

the sense of a “wall clock.”

In the first experiment (to determine the best value of k), the range of k was

permitted to change. The specific k which resulted in the lowest running time was

reported for 30 matrices. Except when two values of k were tied for fastest (recall

that clock() on Linux has a granularity of 0.01 sec), the thirty matrices were

unanimous in their preferred value of k in all cases. A linear regression on this

data shows that k = c1(logn)+ c2 has minimum error in the mean-squared sense at

k = (3/4)(logn)+0. For the next two experiments, k was fixed at eight to simplify

addressing. Another observed feature of the first experiment was that the running

time was trivially perturbed if the value of k was off by one, and by a few percent if

off by two. The results are in Table 9.6 on Page 155.

Each trial of the second experiment consisted of the same code compiled un-

der all four optimization settings. Since k was fixed at eight, addressing was vastly

simplified and so the program was rewritten to take advantage of this. The third ex-

periment simply used the code from the second experiment, with the compilation

set to optimization level 3. The results are in Table 9.8 on Page 156 and Table 9.7

on Page 156.

In the fourth experiment, k was permitted to vary. This resulted in the best run-

ning times, which was a surprise, because the addressing difficulties were nontrivial,

and varying k slightly has a small effect on running time. Yet in practice, letting k

vary did vastly improve the running time of the algorithm. Therefore k = logn was

chosen. See Table 9.6 on Page 155 for the affect of relatively adjusting k upward or

downward.

A fifth mini-experiment was to take the computational cost expression for M4RI

(as found in Section 9.5.1 on Page 146), and place it into a spreadsheet, to seek

optimal values of k for very large values of n, for which experimentation would

not be feasible. The expression 1 + logn− log logn was a better fit than any c1 +
c2 logn. On the other hand, it would be very hard to determine the coefficient of the

loglogn term in that expression, since a double logarithm differs only slightly from

a constant, to any reasonable degree of accuracy.

9.8 Pairing With Strassen’s Algorithm for Matrix Multiplication 151

9.7 M4RI Experiments Performed by SAGE Staff

Martin Albrecht also performed some experiments for M4RI, just as he did for

M4RM. See also, Section 9.3.5 on Page 139.

9.7.1 Determination of k

In order to independently determine if fixed or flexible k is better, some SAGE

experiments were performed on matrices of size 1000, 2000,. . . , 14000, 15000. The

k attempted were 6,8,10 for the flexible method, and k = 8 for fixed addressing (see

Section 9.6 on Page 150). The results are summarized in Table 9.9 on Page 157. The

lowest of the three options for k in the flexible column is listed in the column “least”.

The column “Gaussian” is the author’s implementation of Gaussian Elimination,

and one ratio is the ratio of the least costly flexible k and Gaussian Elimination. The

other ratio is that of the fixed to the flexible M4RI. This shows that while the fixed

addressing has an advantage if k ≈ 8. On the other hand, when k “should” be far

from 8, there is a penalty for picking the “wrong” k that overrules the advantage of

more simplified addressing.

9.7.2 The Transpose Experiment

One experiment was to multiply a 200× 1000 matrix with a 1000× 100,000

matrix. Clearly, it would be faster to do 100,000× 2000 times 2000× 2000 using

the “transpose trick” described in Section 9.3.2 on Page 138. The effects are given

in Table 9.10 on Page 157. In particular, 180 msecs without a transpose and 190

msecs with one. However, this is likely because we are using a naı̈ve approach for

calculating the transpose, rather than butterfly shuffles or some other fast technique.

This is an area for improvement.

9.8 Pairing With Strassen’s Algorithm for Matrix Multiplication

As stated earlier, by observing the slope and shape of a log-log plot, comparing

matrix dimensions and running times, we are able to ascertain that MAGMA uses

Strassen’s Algorithm for matrix multiplication for large GF(2)-matrices, not the

naı̈ve approach. This is probably for two reasons. First, in finite fields, there is no

rounding error. Second, the exponent is lower (log2 7≈ 2.807 vs 3). Thus the normal

running time versus accuracy tradeoff is absent and there is no reason not to use

Strassen.

152 9 The Method of Four Russians

Since Strassen’s Algorithm multiplies an n×n matrix in 7 calls to an n/2×n/2

algorithm, versus 8 for the naı̈ve method, one can estimate the cross-over easily. The

“break-even” point occurs when the time spent on the extra overhead of Strassen’s

algorithm (the 18 matrix additions, for example) equals the time saved by the one

fewer matrix multiplication. Table 9.1 on Page 140 shows that this occurs at about

slightly below 4000×4000. This is because a 2000×2000 requires 0.03 sec, and a

4000×4000 requires 0.26 sec, slightly more than eight times as much.

On the other hand, at 6000× 6000 the M4RM algorithm is roughly equal to

the Strassen-naı̈ve combo that MAGMA is using (despite the fact that MAGMA is

famously hand-optimized). Considering that 0.03 sec are required for M4RM and

0.16 for MAGMA in the 2000×2000 case, we can expect a roughly 16/3 speed-up

by combining M4RM with Strassen over MAGMA.

The implementation of this was carried out by Martin Albrecht, with William

Hart and this author and is now a part of SAGE. The details can be found in [15].

9.8.1 Pairing M4RI with Strassen

Naturally, one might want to pair M4RI with Strassen’s Matrix Inversion For-

mula, to get matrix inversion in even faster time. However, this is far more complex

than one might first imagine, and is discussed in Section 7.7 on Page 101.

9.9 Higher Values of q

For fields GF(q) having q > 2 the M4RM and M4RI algorithms can still be

used. We must first discuss how to make a Gray Code suitable for these fields. In

particular, we want a sequence of n-symbol strings, each composed of elements of

GF(q). This sequence must have two properties. First, all possible qn strings of

length n made up of the alphabet of q field elements must be present exactly once.

Second, each string must differ from its successor and predecessor in exactly one

spot.

Shortly before the printing of this book, this project was carried out by Tomas

Boothby and Robert Bradshaw [53], see that paper for details.

9.9.1 Building the Gray Code over GF(q)

Suppose one has such a Gray code for length n and GF(q), yet one wishes to

write one for length n+1. Suppose further that the original sequence starts with all

zeroes. Observe, the original sequence would have qn strings of length n.

9.9 Higher Values of q 153

First, write the n-length version forwards, then backwards, then forwards, then

backwards, et cetera, until one has written the entire sequence q times. In this new

sequence, of length qqn = qn+1 strings of length n, each string differs from its neigh-

bors in exactly one spot, except for those points when one “reverses direction.” Now,

prepend each string in the first run with 0, then the second run with 1, and the third

run with the next field element, and so forth, until the last run has been prepended

with the last field element. At this point, each member of the entire new, long se-

quence differs in exactly one spot from each of its neighbors. Furthermore, all pos-

sible qn+1 strings have been constructed, and appear exaclty once in the sequence.

Finally, the string begins with all zeroes.

Thus it is easy to use induction-style recursion, and the above algorithm, to pro-

duce a Gray code of any particular length. The base case, of course, is just a list of

the field elements, in any order, repeating none, and begining with 0.

Faster but more complex methods exist, and are covered by Knuth in his treatise

[149, Fascicle 2a].

9.9.2 Other Modifications

For finite fields bigger than GF(2), the chance of a random matrix being invert-

ible is much higher than GF(2). This means that chosing 3k rows might be exces-

sive. But it is not a dominant term in the complexity analysis and so this is probably

not important.

While enumerating the subspace, by aid of the Gray Code, one might have to do

some scalar multiples of the vectors during the vector addition process. For example,

going from 001 to 021 would require adding 2 times the second vector. But this

would have to be done in Gaussian Elimination anyway, and at least in this method,

the scalar multiples are calculated only in Stage 2, and not for each row of the

matrix.

9.9.3 Running Time

The change in the formulas for the running time is that the logarithm in n3/ logn

is to be taken “base q,” and likewise k = logq n.

The details are omitted, since only GF(2) is commonly used in large scale crypt-

analysis. Note, other fields of characteristic two are used in cryptography, but these

can be written as vector spaces over GF(2), for matrix multiplication.

154 9 The Method of Four Russians

9.9.4 Implementation

Immediately before the printing of this book, the author received word that this

research has been carried out. Tomas Boothby and Robert Bradshaw have imple-

mented M4RM over small finite fields, in the paper [53]. The software has been

made a part of SAGE.

9.9 Higher Values of q 155

Table 9.4 Experiment 1— Optimal Choices of k, and running time in seconds.

Size 128 256 362 512 724 1020 1448 2048

Best k 5 or 6 6 7 7 or 8 8 8 or 9 9 9

M4RI 0.09571 0.650 1.68 4.276 11.37 29.12 77.58 204.1

Gauss 0.1871 1.547 4.405 12.34 35.41 97.99 279.7 811.0

Ratio 1.954 2.380 2.622 2.886 3.114 3.365 3.605 3.974

Table 9.5 Running times, in msec, Optimization Level 0

k 1,024 1,536 2,048 3,072 4,096 6,144 8,192 12,288 16384

5 870 2,750 6,290 20,510 47,590 —* —* —* –

6 760 2,340 5,420 17,540 40,630 132,950 —* 1,033,420 –

7 710 2,130 4,850 15,480 35,540 116,300 —* 903,200 –

8 680 2,040 4,550 14,320 32,620 104,960 242,990 798,470 –

9 740 2,100 4,550 13,860 30,990 97,830 223,270 737,990 1,703,290

10 880 2,360 4,980 14,330 31,130 95,850 215,080 690,580 1,595,340

11 1,170 2,970 5,940 16,260 34,020 99,980 218,320 680,310 1,528,900

12 1,740 4,170 7,970 20,470 41,020 113,270 238,160 708,640 1,557,020

13 2,750 6,410 11,890 29,210 55,970 147,190 295,120 817,950 1,716,990

14 4,780 10,790 19,390 45,610 84,580 208,300 399,810 1,045,430 –

15 8,390 18,760 33,690 77,460 140,640 335,710 623,450 1,529,740 –

16 15,290 34,340 60,570 137,360 246,010 569,740 1,034,690 2,440,410 –
*Indicates that too many aborts occurred due to singular submatrices.

See Section 9.5.3 on Page 148.

Table 9.6 Percentage Error for Offset of K, From Experiment 1

error of k 1,024 1,536 2,048 4,096 6,144 8,192 12,288 16384

-4 — — 48.0% 53.6% 38.7% – 32.8% —

-3 27.9% 34.8% 26.6% 31.1% 21.3% – 17.4% —

-2 11.8% 14.7% 11.7% 14.7% 9.5% 13.0% 8.5% 11.4%

-1 4.4% 4.4% 3.3% 5.3% 2.1% 3.8% 1.5% 4.3%

Exact 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

+1 8.8% 2.9% 3.4% 0.5% 4.3% 1.5% 4.2% 1.8%

+2 29.4% 15.7% 17.3% 9.8% 18.2% 10.7% 20.2% 12.3%

+3 72.1% 45.6% 47.7% 32.4% 53.6% 37.2% 53.7% —

+4 155.9% 104.4% 110.8% 80.6% 117.3% 85.9% 124.9% —

+5 304.4% 214.2% 229.1% 172.9% 250.2% 189.9% 258.7% —

+6 602.9% 428.9% 458.9% 353.8% 494.4% 381.1% — —

156 9 The Method of Four Russians

Table 9.7 Results of Experiment 3—Running Times, Fixed k=8

Size M4RI Gaussian Ratio

4,000 rows 18.97 s 6.77 s 2.802

6,000 rows 59.40 s 22.21 s 2.674

8,000 rows 135.20 s 51.30 s 2.635

12,000 rows 167.28 s 450.24 s 2.692

16,000 rows 398.12 s 1023.99 s 2.572

20,000 rows 763.92 s 1999.34 s 2.617

Note: The fixed k=8 option was rejected because of these inefficiencies.

Table 9.8 Experiment 2—Running time under different Compiler Optimization Set-

tings, k=8

Opt 0 Opt 1 Opt 2 Opt 3

4000 x 4000

Gauss 91.41 48.35 48.37 18.97

Russian 29.85 17.83 17.72 6.77

Ratio 3.062 2.712 2.730 2.802

6000 x 6000

Gauss 300.27 159.83 159.74 59.40

Russian 97.02 58.43 58.38 22.21

Ratio 3.095 2.735 2.736 2.674

8000 x 8000

Gauss 697.20 371.34 371.86 135.20

Russian 225.19 136.76 135.21 51.30

Ratio 3.096 2.715 2.750 2.635

9.9 Higher Values of q 157

Table 9.9 Trials between M4RI and Gaussian Elimination (msec)

Matrix Fixed Flex Flex Flex Flex Ratio Ratio

Size K=8 K=6 K=8 K=10 Least Gaussian G/Least fixed/flex

1,000 0 10 10 10 10 20 2.0000 0.0000

2,000 20 40 40 40 40 133 3.3125 0.5000

3,000 70 110 100 110 100 383 3.8250 0.7000

4,000 150 230 210 210 210 873 4.1548 0.7143

5,000 350 790 430 470 430 1,875 4.3605 0.8140

6,000 940 1,180 990 1,060 990 4,178 4.2197 0.9495

7,000 1,970 5,320 2,120 1,980 1,980 8,730 4.4091 0.9949

8,000 3,360 4,450 3,480 3,280 3,280 14,525 4.4284 1.0244

9,000 4,940 6,830 5,240 4,970 4,970 22,233 4.4733 0.9940

10,000 7,110 9,820 7,240 6,890 6,890 31,180 4.5254 1.0319

11,000 9,340 13,010 9,510 9,090 9,090 41,355 4.5495 1.0275

12,000 12,330 46,470 12,640 12,010 12,010 54,055 4.5008 1.0266

13,000 15,830 20,630 16,040 15,260 15,260 67,920 4.4509 1.0374

14,000 19,280 62,180 19,640 18,690 18,690 83,898 4.4889 1.0316

15,000 23,600 45,840 24,080 22,690 22,690 101,795 4.4863 1.0401

*The “fixed k = 8” includes the streamlined addressing as described in Section 9.6 on

Page 150, which the “flexible k = 8” and other flexible k’s do not have.

Table 9.10 The Ineffectiveness of the Transpose Trick

k C = AB C = (BT AT)T

1 0.79 s 0.37 s

2 0.35 s 0.25 s

3 0.23 s 0.22 s

4 0.20 s 0.20 s

5 0.18 s 0.21 s

6 0.25 s 0.20 s

7 0.33 s 0.19 s

8 0.54 s 0.19 s

9 0.82 s 0.19 s

10 1.31 s 0.19 s

11 2.10 s 0.19 s

(200×1000 by 1000×100,000)

158 9 The Method of Four Russians

Table 9.11 Optimization Level 3, Flexible k

Dimension 4,000 8,000 12,000 16,000 20,000 24,000 28,000 32,000

Gaussian 19.00 138.34 444.53 1033.50 2022.29 3459.77 5366.62 8061.90

7 7.64 – – – – – – –

8 7.09 51.78 – – – – – –

9 6.90 48.83 159.69 364.74 698.67 1195.78 – –

10 7.05 47.31 151.65 342.75 651.63 1107.17 1740.58 2635.64

11 7.67 48.08 149.46 332.37 622.86 1051.25 1640.63 2476.58

12 – 52.55 155.51 336.11 620.35 1032.38 1597.98 2397.45

13 – – 175.47 364.22 655.40 1073.45 1640.45 2432.18

14 – – – – – – 1822.93 2657.26

Min 6.90 47.31 149.46 332.37 620.35 1032.38 1597.98 2397.45

Gauss/M4RI 2.75 2.92 2.97 3.11 3.26 3.35 3.36 3.36

Chapter 10

The Quadratic Sieve

This chapter will discuss the Linear Sieve and Quadratic Sieve, algorithms for

factoring the product of two distinct prime integers, or any other composite number.

The main purpose of the algorithm is to break the famous cryptosystem RSA. The

algorithms use matrices over GF(2), but they will be sparse matrices rather than

dense matrices.

This chapter is here for several reasons. First, we have written primarily of dense

matrices over GF(2), and the exposition would be incomplete without discussing

sparse matrices. The sparse matrix techniques described in Appendix D can be

used anywhere that sparsity occurs in cryptanalysis, but many were designed for

the Quadratic Sieve. Second, we have written of how to break block ciphers and

stream ciphers, so it would be a pity not to discuss how to break public-key systems

as well. Third, the Quadratic Sieve algorithm, when taken with all its variants and

modifications, stands as one of the most sophisticated algorithms in all of computer

science, and fourth, it uses some elegant number theory.

This is only the tip of a very large iceberg. There are many variations, improve-

ments, and enhancements which are omitted here. Many of those are crucial in

factoring larger numbers. Furthermore, we exclude many other important factor-

ing algorithms, because they are unrelated to the Quadratic Sieve. While the NFS

(Number Field Sieve) has eclipsed the Quadratic Sieve as an algorithm, understand-

ing the NFS is much easier after studying the QS. We hope this section will inspire

the reader to read further on this vital topic.

10.1 Motivation

In order to understand why factoring is important, and particularly the case of the

product of two primes, we must briefly mention the RSA algorithm, named for its

inventors Ron Rivest, Adi Shamir, and Leonard Aldeman. We need not inform the

reader of the enormous influence that the RSA algorithm has had on communica-

tions security, cryptography, and network security. Obviously, E-commerce would

© Springer Science + Business Media, LLC 2009

G.V. Bard, Algebraic Cryptanalysis, DOI: 10.1007/978-0-387-88757-9_10 159

160 10 The Quadratic Sieve

be much harder without public-key cryptosystems, and so the economic boom of the

late 1990s can be accredited, in part, to the existence of public-key cryptography—

the most common example and application of which is RSA.

To define a public-key cryptosystem rigorously would lead us too far astray in our

discussion. However, it works as follows. Each user has a public key and a private

key. To encrypt a message requires only the public key, but to decrypt it requires the

private key. Thus if Alice publishes her public key on her web page, then anyone

can write encrypted messages to Alice using that key. And further, if the private key

is kept secret, only the owner of the private key (Alice) can read those encrypted

messages, provided that the system used is cryptographically secure.

In any case, it turns out that if you can factor the product of two distinct primes,

you can convert public keys into private keys, and thus read everyone’s messages.

This is a major motivation in factoring research and so we will quickly present the

rudiments of the RSA algorithm.

10.1.1 A View of RSA from 60,000 feet

A user will generate two primes p and q, subject to further restrictions which we

will not mention here, and calculate n = pq. Then he will generate e,d such that

ed = 1 mod φ(n), which will always be possible if e and d are coprime to φ(n).
Here φ(n) is the Euler Totient function. By definition, this is the number of pos-

itive integers that are both coprime to n and less than n. That sounds irrelevant, but

it turns out that xa = xb mod n when a = b mod φ(n). Furthermore, when n is the

product of two primes p and q (as is the case here), then φ(n) = (p−1)(q−1).
The public key will consist of (n,e) and the private key will consist of d.

If Alice wants to send a message m to Bob, then Alice must get Bob’s public key

(n,e), and calculate me mod n = c. Bob will then transmit c, the ciphertext to Alice.

Then Alice will calculate

(c)d = (me)d = med = m1 = m

since ed = 1 mod φ(n). Now Alice has Bob’s message. Thus it is imperative that

Alice keep the private key d secret, because anyone who has it can read her mes-

sages.

There are many details which we exclude. An excellent introductory reference is

[216, Ch. 6]. However, we will now show that if one can factor n, one can construct

the private key given only the public key.

10.1 Motivation 161

10.1.2 Two Facts from Number Theory

We need two more facts from number theory. The first is that the Euclidean Al-

gorithm can be used to easily find a and b, given some x and y, such that ax+by = 1,

provided that x and y are coprime. If they are not coprime, let g > 1 be their gcd.

Then the same method produces ax+by = g. The other fact is much deeper.

Theorem 61 (The Two-Modulus Chinese Remainder Theorem). Let c and d be

coprime positive integers. Suppose ac + bd = 1 and also that z = x1 mod c and

z = x2 mod d. Then

z = x1bd + x2ac mod cd

Proof. We are given the equation

ac+bd = 1

From this equation we have

1. By reducing the equation mod c, we learn bd = 1 mod c.

2. Because d divides bd then bd = 0 mod d.

3. By reducing the equation mod d, we learn ac = 1 mod d.

4. Because c divides ac then ac = 0 mod c.

5. Combining these we learn that if z = x1 mod c and z = x2 mod d then

x1bd + x2ac = z mod cd

which can be verified by reducing it mod c to get x1bd = x1 = z and reducing it mod

d to get x2ac = x2 = z. ⊓⊔
It should be noted that the above theorem still works with multiple moduli,

specifically with c1,c2, . . . ,cn which are pairwise coprime (i.e. the gcd of ci and

c j is 1 if i 6= j), and given z = xi mod ci for i ∈ {1,2, . . . ,n}. The final answer is

given mod c1c2c3 · · ·cn. The statement and proof are only slightly more complex,

see [101, Ch. 7.6].

If instead c and d are not coprime, then ac + bd = g instead of ac + bd = 1.

The first and third bullet have = g instead of = 1. Let f denote our formula

x1bd + x2ac. We have f = zg mod cd, but because g| f in the ordinary integers,

we can write (f /g) = z mod cd/g. Note that since g is the gcd of c and d, it di-

vides each of them, and thus surely divides their product. One need merely check

k ∈ {0,cd/g,2cd/g,3cd/g, . . . ,cd− cd/g} to find k +(f /g) = z mod cd, a total of

g checks at worst.

10.1.3 Reconstructing the Private Key from the Public Key

The algorithm is given in Algorithm 15 on Page 163. Suppose we have a public

key (n,e) and somehow we manage to factor n into p and q. Using only three calls

to the Euclidean Algorithm, we can find the following coefficients

162 10 The Quadratic Sieve

• Let g = gcd(p−1,q−1) and find r0 and s0 such that r0(p−1)+ s0(q−1) = g.

• Find r1 and s1 such that r1e+ s1(p−1) = 1.

• Find r2 and s2 such that r2e+ s2(q−1) = 1.

By reducing the last two bullets mod (p−1) and mod (q−1) respectively, we

know that r1e = 1 mod (p− 1) and r2e = 1 mod (q− 1), and so we can use the

Chinese Remainder Theorem with z = 1. In other words, we have found equations

for 1 mod q−1 and for 1 mod p−1, and we will use them to make one for 1 mod

(p−1)(q−1). Here, a = r0, c = p−1, b = s0 and d = q−1. Furthermore, x1 = r1e

and x2 = r2e. Then we have, via Theorem 61 on Page 161,

(r1e)s0(q−1)+(r2e)r0(p−1) = g mod (p−1)(q−1)

and we can factor out an e to obtain

e [r1s0(q−1)+ r2r0(p−1)] = g mod (p−1)(q−1)

Notice furthermore, that since g is the gcd of p−1 and q− 1, it divides both of

them, and thus divides that which is between the brackets. We obtain

e

[
r1s0(q−1)+ r2r0(p−1)

g

]

= 1 mod
(p−1)(q−1)

g

and since that which is in the brackets (call it w) multiplied by e is 1 mod (p−
1)(q− 1)/g, then w is the unique multiplicative inverse of e in the integers mod

(p−1)(q−1)/g.

This is not quite what we need. We need the multiplica-

tive inverse of e in the integers mod (p − 1)(q − 1). Let k ∈
{0,(p−1)(q−1)/g,2(p−1)(q−1)/g,3(p−1)(q−1)/g, . . .}. Then for some

value of k, we will have e(k + w) = 1 mod (p− 1)(q− 1), because only numbers

of the form k + w mod (p− 1)(q− 1) are equal to w mod (p− 1)(q− 1)/g. Then

k +w = d is the private key. There are only g choices for k.

Note in practice, p and q are often restricted to being “strong primes” or “safe

primes.” The usual definition of this is that (p− 1)/2 and (q− 1)/2 are prime, but

authors vary on this term. Because p and q are both odd, then p−1 and q−1 must

have a gcd of at least 2. But if p and q are strong/safe primes, then the gcd is exactly

2. This is important in preventing certain attacks related to Pollard’s “rho” Factoring

Method [63, Ch. 31.9], but has the convenient effect of allowing us to only check at

worst two candidates for d.

An example is in order. Suppose Alice’s public key is (n = 9797,e = 7). Then we

start with factoring and get p = 101 and q = 97 as the prime factorization of n = pq.

We can easily calculate φ(n) = (96)(100) = 9600 and gcd(96,100) = 4. Following

Algorithm 15, we obtain:

(1)(101)+(−1)(97) = 4 = g

(43)(7)+(−3)(100) = 1

10.2 Trial Division 163

INPUT: An RSA public key (n,e), and a factoring oracle F .

OUTPUT: The RSA private key d such that ed = 1 mod φ(n).
1: Use F to factor n = pq, a product of two distinct primes.

2: Using the Euclidean Algorithm, find r0 and s0 such that r0(p−1)+ s0(q−1) = g.

3: Using the Euclidean Algorithm, find r1 and s1 such that r1e+ s1(p−1) = 1.

4: Using the Euclidean Algorithm, find r2 and s2 such that r2e+ s2(q−1) = 1.

Note: Since we know r1e = 1 mod (p−1) and r2e = 1 mod (q−1), then we can use the Chinese

Remainder Theorem (r1e)s0(q−1)+(r2e)r0(p−1) = g mod (p−1)(q−1).

Note: Which further implies e
[

(r1)s0(q−1)+(r2)r0(p−1)
g

]

= 1 mod (p−1)(q−1)/g

5: Let w← (r1s0(q−1)+ r2r0(p−1))/g.

6: For i← 0 to g−1 do

• Let d← w+ i
(p−1)(q−1)

g
.

• Check if ed = 1 mod (p−1)(q−1).
• If YES: output d is the private key.

Algorithm 15: Reconstruction of an RSA Private Key from the Public Key [Rivest,

Shamir, Aldeman]

(−41)(7)+(3)(96) = 1

7× [(43)(−1)(96)+(−41)(1)(100)] = 4 mod (100)(96)

7× [−8228] = 4 mod (100)(96)

7× [−2057] = 1 mod (100)(96)/4

We have found the multiplicative inverse of 7 mod 2400, but want the multiplicative

inverse mod 9600. We consider adding k ∈ {0,2400,4800, . . . ,} and discover that

7(4800−2057) = 7(2743) = 1 mod 9600. Therefore the private key is d = 2743.

Thus anyone who can factor the product of two distinct primes can turn RSA

public keys into private keys.

10.2 Trial Division

This section reviews some operations which are likely familiar or obvious to the

reader. But when we wish to count operations or explore running time, we must be

carefully precise even with obvious tasks.

Imagine that we want to know if n is prime. Since we know all positive integers

are a product of finitely many primes, we can just simply divide by all the primes in

[2,n−1], and if none of them divide n, then we know n is prime. This is less foolish

than dividing by all integers less than n, (we only need the primes, because if 2 and

3 fail to divide n then surely 6 will fail to divide n) but it is still very naı̈ve because

there is no need to check a prime bigger than
√

n.

Suppose p is a factor of n, and p >
√

n. Then 1/p < 1/
√

n and n/p < n/
√

n. But

n/
√

n =
√

n and so n/p <
√

n. Surely n/p is a factor of n, and so n has a factor less

164 10 The Quadratic Sieve

than
√

n. We do not know if n/p is prime, but its prime factors are smaller than it,

and so therefore smaller than
√

n, as well. Therefore we have proven

Lemma 62. All non-prime positive integers n have a prime factor ≤√n.

This helps not only with primality tests, but also with factoring the product of

two primes. Once you find one of the primes p, then the other is n/p.

This is not as good news as it sounds. The n we are interested in are in the range

of 100-1000 digits, and so
√

n has between 50–500 digits. There are roughly x/ lnx

primes less than x [226]. Accordingly, we would expect 2
√

n/ logn primes less than√
n, and so there would be no hope of factoring such an n in a lifetime, by using

repeated division.

Thus we might imagine that factoring integers is very difficult. However, with

numbers that have a property called “smoothness” the story is quite different.

Definition 63. A number n is called B-smooth if all primes dividing n are less than

or equal to B.

The following is a factoring strategy for smooth numbers n. If we knew n was

square-free and B-smooth, then it is the product of some of the primes less than B.

At most π(B) trial divisions would be required. We divide n by each prime. If it

divides, we work with the quotient from then on, and if not, we ignore the fractional

result. If this process ends with 1, then we know the number was B-smooth, and if

not, then whatever is left is a product of only primes greater than B.

For the non-square-free case, we have to deal with the case that p might divide

n several times. Naturally, we simply divide n by 2 repeatedly until it no longer

divides n, and take the last integer result. Then we repeatedly divide by 3, 5, and so

on. This operation of removing the p-part of x is quite useful.

This algorithm is given here as “Process(x, p)” (see Algorithm 16 on Page 165),

which gives the value of m in x = pkm such that p does not divide m, or equivalently

k is the largest possible. In other words, take all of the prime factorization of n,

except any instances of p. Another way to put it is limn→∞ gcd(x, pn) This function is

called “remove” in the GNU Multiple-Precision Library for large integer arithmetic,

GMP.

Then, to find out if n is smooth, we can execute n1 =Process(n,2),
n2 =Process(n1,3), n3 =Process(n2,5), . . . , ni+1 =Process(ni, pi+1), . . . where pi

is the ith prime number. We definitely stop after reaching any prime larger than B.

If we ever have ni = 1, at any time, then we know the number is B-smooth, and

moreover, is pi−1-smooth. If the process terminates and the last ni is not 1, then that

number is a product of primes greater than B. Also, we get the entire factorization

of the B-smooth original input for free with this method, assuming we retain how

many times we had to divide by each prime.

It is easy to see that if n = 2e13e25e37e4 · · · pei
i · · · p

eℓ
ℓ then

(e1 +1)+(e2 +1)+(e3 +1)+ · · ·+(eℓ +1) = ℓ+
i=ℓ

∑
i=1

ei

integer divisions would be required.

10.2 Trial Division 165

INPUT: A number x, and a prime p.

OUTPUT: The number x after removing the p-part. This can be thought of in three ways:

• The value of m where x = pkm and k > 0, but p does not divide m.

• The value of limn→∞ gcd(x, pn).
• The product of all the primes in the factorization of x not equal to p, including multiple

primes multiple times.

1: t1← x

2: t2← x/p

3: i← 0

4: While t2 is an integer do

a. t1← t2

b. t2← t2/p

c. i← i+1

5: Return i

Note: The number of integer divisions used is k +1.

Algorithm 16: Process(x,p): Removing all factors of p from x. [Classic]

10.2.1 Other Ideas

10.2.1.1 Classification by Difficulty

Let us consider the positive integers less than a trillion. For prime numbers, there

are special primality tests, which we do not have need of here. For numbers that are

the product of two primes, we know that at least one is less than a million—there are

78,498 such primes. By similar argument, for numbers that are the product of three

primes, we know that at least one is less than 10,000—there are 1229 such primes.

For all others, they surely have 4 or more primes dividing them, and so they all have

a prime less than 1000 dividing them—there are only 168 such primes.

How many numbers less than N are a product of two primes? (Some authors call

these numbers a semiprime, but that sounds funny because an integer is either prime

or not). Let us classify the semiprimes less than N by their lowest prime divisor. If

it is 2, the other prime can be up to N/2. If it is 3, the other prime can be N/3, and

so forth. And note that these sets are mutually exclusive. The lower prime cannot

simultaneously be 2 and 3.

Thus we have π(N/2)+π(N/3)+π(N/5)+ · · ·+π(N/p) where p is the largest

prime less than
√

N. For N = 1012, it turns out p = 999,983, which is the 78,498th

prime. Summing the approximation π(x) ∼ x/ lnx, which is only partially accu-

rate, over π(N/2) + · · ·+ π(N/999983) yields 127.7 billion. The approximation

1012/ ln1012 approximates that there are 36.2 billion primes less than a trillion. The

product of three or more primes is the classification, therefore, of the remaining

836.1 billion positive integers less than a trillion.

This is a fantastically bizarre distribution of difficulty. Of the trillion numbers

under consideration, 83.61% of them can be factored by considering only 1229

166 10 The Quadratic Sieve

primes—and for many of them, far fewer than that. But for 12.77% of them, we

must consider 78,498 primes. The remaining 3.62% are primes, and so are easily

found with primality tests. We have also neglected to mention that perfect squares

and perfect cubes are very easy to identify, since a square-root or cube-root is a

cheap operation and identifies them immediately. There are only a million perfect

squares in our domain, so they are not significant overall as a percentage.

Therefore, we can conclude that the difficulty in factoring strongly rests with the

product of two distinct primes case. Thus, it seems natural as the underlying hard

problem for a public-key cryptosystem.

10.2.1.2 Easy Factorization

We can turn the above idea on its head. First we use some primality test on

n. Then given n is composite, we can engage in trial division, testing only those

primes less than B. If n is B-smooth, then surely we succeed in factoring. If n is the

product of a large prime and a number which is B-smooth, then the trial divisions

end with a number that is a large prime, which can then be detected by a primality

test. Baring these two cases, we end with a product of two or more primes, all of

which are bigger than B—call this the “hard part” of n.

Such an algorithm is called “easy factorization”. If we are searching for B-smooth

numbers, we can simply use this method. Once we know that the number is not B-

smooth, we need not find its large prime components. This requires very few integer

divisions, and will be a step in the Linear Sieve. It turns out that Carl Pomerance

found a much better way of finding smooth numbers, and this was the origin of the

Quadratic Sieve.

10.2.1.3 Testing Divisibility with GCDs

Suppose we wish to know if a number n is 101-smooth. We can first do trial

division on 2, 3, 5, 7, 11, 13, and 17. Then we take the remainder, m, and evaluate

gcd(m,19×23×29×31×37×41×43)

as well as

gcd(m,47×53×57×59×61×67×71)

and finally

gcd(m,73×79×83×89×91×97×101)

and only if one of those gcds is not 1 do we need to bother with any of those

“medium” primes. For the size of numbers we consider in this chapter, “medium

primes” might have five digits each.

10.2 Trial Division 167

10.2.2 Sieve of Eratosthenes

To generate primes in bulk, we can use a method invented1 by

’Eρατoσθενης o Kυρηνης . It is named the Sieve of Eratosthenes in his

honor. Basically, one writes all the integers from 2 to n, inclusive. At each iteration,

one circles the first unmarked number. This will be 2 on the first round, and so one

crosses out every second number (4, 6, 8, . . .). On the next round, it will be 3, and

one crosses out every third number (6, 9, 12, . . .). And on the ith round, it will be

the ith prime number, pi, and one crosses out 2pi,3pi,4pi, . . .
The crossed out numbers are composite and the circled numbers are prime. One

property is that after the greatest prime less than
√

n, no new composite numbers

are crossed out. Thus at that point, any numbers remaining unmarked are primes

and can be circled.

INPUT: An integer n > 2.

OUTPUT: The set of primes inside [2,n].
1: For i = 2 to n do Marked[i] =“unknown”

2: P←{}
3: While there is an i marked “unknown” do

a. Let i be the lowest integer marked “unknown”.

b. if i >
√

n then see note below.

c. Mark i as “prime” and insert i into P.

d. j← 2i

e. While j ≤ n do

i. Mark j as “composite”.

ii. j← j + i

4: Return P.

Note: in the if statement after the outermost while loop, if i >
√

n, no more numbers will ever

be newly marked as composite. Therefore, you can mark all remaining unmarked numbers as

“prime” and insert them into P. This is what would happen anyway, but it is a speed-up.

Algorithm 17: To generate a list of all primes in [2,n]. [Eratosthenes of Cyrene]

Of course, this requires n−1 integers to be stored in memory, or if coded more

efficiently, at least n bits of memory. To identify all the primes less than 1050 (in or-

der to factor a number roughly 10100) would require roughly 1050 ≈ 2159.25··· bits of

memory, at absolute minimum. At the time this was written, the most expensive PCs

had 128 gigabytes of RAM or 250 bits. So there is absolutely no hope of generating

(or for that matter, storing) these primes.

Nonetheless, it is useful because sometimes one merely needs a list of the lowest

10,000 prime numbers for some computational purpose.

1 Eratosthenes of Cyrene, who also had some noted results in astronomy and geography, including

the famous experiment which measured the curvature of the earth.

168 10 The Quadratic Sieve

10.2.2.1 Smooth Version

To find all the smooth numbers, the Sieve of Eratosthenes only needs the fol-

lowing tiny change. This is a simple version of the Quadratic Sieve, which also

generates smooth numbers in bulk.

INPUT: An integer n > 2.

OUTPUT: The set of all pB-smooth numbers inside [2,n].
1: For i = 2 to n do Sandbox[i]← i

2: For i = 1 to B do

a. Let p be the lowest integer such that Sandbox[p] 6= 1

b. j← p

c. While j ≤ n do

i. Sandbox[j]←Process(Sandbox[j], p)

ii. j← j + p

3: L←{}
4: For i = 2 to n do if Sandbox[i] = 1 then insert i into L.

5: Return L.

Note: Process is defined in Algorithm 16 on Page 165.

Algorithm 18: To generate a list of all pB-smooth numbers in [2,n]. [Variant of

Eratosthenes, from [192]]

We stated earlier that if x = pkm, with p not dividing m, then the number of
divisions used by “process” is k +1. Since we only call process when x is divisible
by p, then every number will experience 2 or more divisions by p. Of these, 1/p

will experience 3 or more divisions by p, and 1/p2 will experience 4 or more, and

1/pi will experience i+2 or more. This means the expected number of divisions is

2+1

(
1

p
− 1

p2

)

+2

(
1

p2
+

1

p3

)

+3

(
1

p3
+

1

p4

)

+ · · ·= 2+
1

p
+

1

p2
+

1

p3
+ · · ·= 2p−1

p−1

An Interesting Trick

Incidentally, another trick is to simply take gcd(n, p20) if the prime is not “too

large”. Then one can call Process(x, p). Only if n is divisible by p21 or larger will

Process use more than one integer division. And taking the gcd of two positive

integers is not all that much more of an operation than multiplying them.

10.3 Theoretical Foundations 169

10.3 Theoretical Foundations

The entire structure and method of the Linear Sieve and Quadratic Sieve are

based on the following result. First, we present the most general case, and that shows

that both algorithms are useful for factoring any composite number. However, it

turns out that the proof is far easier to understand in the special case that concerns

us here, namely that n = pq, the product of two distinct prime numbers. We prove

that corollary from scratch, so the reader should not be dismayed if the proof of the

general case is too confusing.

The theorem has probably been known for a long time, but was first used in

factoring by Maurice Kraitchik, according to [192].

Theorem 64. If x2 = y2 mod n and x 6= y mod n and x 6=−y mod n then gcd(x+y,n)
and gcd(x− y,n) are non-trivial factors of n.

Note, all positive integers n are divisible by 1 and n, and so therefore, we call

those the trivial factors. Any other positive integer factor is a non-trivial factor.

Proof. Since x2 = y2 mod n then x2−y2 = 0 mod n, or (x+y)(x−y) = 0 mod n. In

the integers, this means that (x+ y)(x− y) = kn.

Let p be a prime dividing n. Then p divides kn and since p divides the right-hand

side surely it must also divide the left-hand side. Thus p divides (x + y)(x− y). It

is a basic result in number theory that if p divides ab then either p divides a or p

divides b, provided that p is prime. Thus either p divides (x+y) or p divides (x−y),
or both.

Thus we have proven that for all primes dividing n, either that prime divides

(x+ y) or that prime divides (x− y).
Let the factorization of n = p

e1
1 p

e2
2 · · · p

eℓ
ℓ . Suppose for all i∈ {1,2, . . . , ℓ}we have

p
ei
i divides (x + y). Then surely n divides (x + y) but that would require (x + y) =

0 mod n or x =−y mod n, which we forbade.

Thus for some pi, there is an fi < ei such that p
fi
i divides (x + y) but p

ei
i does

not. The same argument works for (x− y) also, by reliance upon x = y mod n being

forbidden.

On the one hand fi = 0 is allowed. But we know pi must divide either (x+ y) or

(x− y), and so fi > 0 for either one or the other, or both.

Of course, (x + y) and (x− y) can have factors that are not of the form pi to

some power. But since n is composed only of pi to various powers, then gcd(x +
y,n) and gcd(x− y,n) cannot have any primes other than pi to various powers in

their factorizations. Also, the exponent of pi in either of the gcds cannot exceed

the exponent in the factorization of n. Finally, because of the fi < ei argument, the

factors are non-trivial. ⊓⊔
The argument is much simpler if n is square free. Then all the exponents in

the factorization are one, and this means that some of the primes dividing n divide

(x+ y), but not all, and some of the primes dividing n divide (x− y), but not all.

In the case of RSA moduli, n is the product of two primes, and so this theorem

gives us much more than just a pair of non-trivial factors. Since there are only two

170 10 The Quadratic Sieve

primes in the factorization, then one gcd is one of the primes and the other gcd is

the other prime.

Corollary 65. If n is the product of two primes, and x2 = y2 mod n but x 6= y mod n

and x 6=−y mod n then gcd(x+ y,n) and gcd(x− y,n) are those primes.

Because the proof of the previous theorem is somewhat difficult, we will prove

the corollary from scratch.

Proof. Since x2 = y2 mod n then x2−y2 = 0 mod n, or (x+y)(x−y) = 0 mod n. In

the integers, this means that (x+ y)(x− y) = kn.

We know that p divides n and q divides n, so clearly both must also divide kn,

and since they divide the right-hand side, they must divide the left-hand side as well.

Thus we have both p and q dividing (x+ y)(x− y).
It is a basic result in number theory that if p divides ab then either p divides a or

p divides b. Thus either p divides (x+ y) or p divides (x− y), or both, and likewise

q. We now claim that it cannot be the case that both p and q divide (x + y). If this

were the case, surely pq would divide (x+y) and then n divides (x+y) which means

that x+ y = 0 mod n or x =−y mod n, which we forbade.

Likewise, if both p and q divide (x− y) then x = y mod n which we forbade.

So either p divides (x + y) but not (x− y) and q divides (x− y) but not (x + y), or

alternatively, q divides (x + y) but not (x− y) and p divides (x− y) but not (x +
y). Because the factorization of n = pq, then either gcd(x + y,n) = p and gcd(x−
y,n) = q or alternatively, gcd(x + y,n) = q and gcd(x− y,n) = p. Either way, we

have factored n. ⊓⊔

10.4 The Naı̈ve Sieve

We could imagine the following algorithm. Generate a random number x, and

find y = x2 mod n. Add this pair (x,y) to a list. If at any time, two pairs in the list

have the same y value, then check to see that the x values are not equal mod n, nor

are they additive inverses mod n. If two pairs have matching y values without these

two caveats, then Corollary 65 on Page 170 gives the correct values of p and q. This

is summarized as Algorithm 19 on Page 171.

This algorithm is very similar to that of Pierre de Fermat’s factoring method.

Check to see if n+ y2 is a perfect square, for y ∈ {0,1,2, . . .}. Surely if n+ y2 = x2

then n = (x+y)(x−y). While Fermat requires n = x2−y2, we require kn = x2−y2.

It turns out this is very inefficient. Suppose x2
1 = 2 mod n and x2

2 = 3 mod n, but

also x2
3 = 6 mod n. Clearly (x1x2)

2 = x2
1x2

2 = 2× 3 = 6, and x2
3 = 6. So we should

check that (x1x2) 6= x3 and also (x1x2) 6= −x3 mod n. But after checking for those

two caveats, we can use Corollary 65 on Page 170 to obtain the factors. The naı̈ve

version of the algorithm would never find this, because 2 6= 6 and 3 6= 6.

10.5 The Gödel Vectors 171

INPUT: The product of two primes, n.

OUTPUT: The factorization of n.

1: i← 0, L←{}
2: For “a long time” do

a. i← i+1.

b. Generate a random xi in the set {2, . . . ,n−1}.
c. Calculate yi = x2

i mod n.

d. If there is any (x j,y j) ∈ L for j ∈ {1,2,3, . . . , i−1} such that yi = y j then

• if xi 6= x j and xi 6= n− x j then output

gcd(xi + x j,n)×gcd(xi− x j,n) = n

is the factorization, and halt.

e. Add (xi,yi) to the set L.

Algorithm 19: A Naı̈ve Version of the Quadratic Sieve [Unknown]

10.4.1 An Extended Example

Suppose we wish to factor 9797. We could pick a few numbers in the range

(
√

9797,9797) and square them. Then we could see if any square to the same an-

swer.
x2

1 = 2352 = 6240 x2
7 = 12752 = 9120

x2
2 = 2962 = 9240 x2

8 = 16702 = 6552

x2
3 = 5412 = 8568 x2

9 = 17632 = 2520

x2
4 = 5682 = 9120 x2

10 = 17652 = 9576

x2
5 = 7532 = 8580 x2

11 = 21632 = 5400

x2
6 = 11242 = 9360

At this point, you might believe we have failed. But actually, this is sufficient

data to factor the number, as we will see in Section 10.7 on Page 178. As it comes

to pass, precisely 15 combinations2 of these squares (multiplied together) result in

perfect squares in the integers, and so can be used to factor n provided that they do

not fall into the x =±y mod n trap.

10.5 The Gödel Vectors

In number theory, it is extraordinarily common to deal with numbers in their

factored form. The prime factorization yields a great deal of information about the

number. Many techniques arise from this notation.

As it turns out, if we restrict ourselves to numbers that are 20-smooth, for ex-

ample, then because there are only 8 primes less than 20, all the factorizations can

be written as 2a3b5c7d11e13 f 17g19h or an 8-dimensional vector (a,b,c,d,e, f ,g,h).

2 Actually, there are 16 combinations if you count the zero vector, but that is not useful in factoring.

172 10 The Quadratic Sieve

Thus by limiting ourselves to numbers that are pB-smooth, where pB is the Bth prime

number, we can use B-dimensional vectors to represent the factorization. Note that

1 is represented by the zero vector.

This may not seem to be all that much of a gain, and we loose the ability to

write numbers that are not pB-smooth, which is a serious loss. But as it comes to

pass, many operations which are otherwise highly non-trivial on the integers become

extremely simple and fast in this notation. Because the author needs to call these

vectors something, we shall call them the Gödel vectors, for reasons which will

become clear momentarily.

10.5.1 Benefits of the Notation

Let us first examine the numerous number-theoretical operations that are speeded

by using positive integers encoded in this form. This is in no small part aided by the

fact that k-smooth numbers are closed under multiplication.

Suppose we have two numbers, a and b, with Gödel vectors a and b. Denote the

ith element of the vector a as ai and similarly bi.

1. Multiplication: To find c such that c = ab, then just add the vectors a and b.

2. Squaring: Accordingly, since a2 = aa then squaring a requires simply dou-

bling each entry of the vector a.

3. Is Perfect Square? If b is a perfect square, then all its vector entries must be

even.

4. Square Root: If b is a perfect square, because all its vector entries are even,

one can divide each by two to get the integer square root.

5. nth Powers: To raise an, with n being a positive integer, we need merely mul-

tiply the vector a by n.

6. Is Perfect nth Root? Again, if and only if b is a perfect nth power, for any

positive integer n, will all of its entries be multiples of n.

7. Extracting the nth Root: Accordingly, if b has all its entries being multiples

of n, then dividing each by n will yield the integer
n
√

b.

8. Divisibility: If a divides b, then ai ≤ bi for all entries i of the vectors.

9. Division: Accordingly if ai ≤ bi for all entries i, then a divides b and c = b/a

can be calculated by c = b−a.

10. Least Common Multiple: To find the least common multiple c of a and b,

note that ci = max(ai,bi) will yield c.

11. Greatest Common Factor: Likewise, to find the greatest common divisor g of

a and b, note that gi = min(ai,bi) will yield g.

12. Tau: To find τ(a), the number of positive integers dividing a (see Theorem 15

on Page 46), then simply increment all the non-zero entries of a and multiply

them.

Only the last one really requires examples. We will work with 12-smooth num-

bers, so our vectors have 5 entries, one each for 2, 3, 5, 7, and 11.

10.5 The Gödel Vectors 173

1. τ(12) = τ((2,1,0,0,0)) = 3×2 = 6

2. τ(5) = τ((0,0,1,0,0)) = 2

3. τ(25) = τ((0,0,2,0,0)) = 3

4. τ(30) = τ((1,1,1,0,0)) = 8

Using this notation, it is much easier to prove that τ(x) = 5 implies that x is

the fourth power of a prime number—a standard exercise in an elementary number

theory course, trivial in this notation but otherwise somewhat longer.

10.5.2 Unlimited-Dimension Vectors

We will cap the length of the vector at dimension B in order to be able to have

matrices of a predictable and bounded dimension. Therefore, we are restricted to

pB-smooth positive integers. However, one need not do so. Particularly, if one uses

a linked list to store the non-zero entries of the vector, there is no need to cap the

length. One can even include negative integers by introducing one additional slot

for the “prime” -1, but taking care not to include the exponent for −1 in operations

like testing for divisibility or finding lcms and gcds.

10.5.3 The Master Stratagem

We have shown that a perfect square has a Gödel vector which is all even. And

thus, we seek to find a linear combination of the Gödel vectors of the yis, so that the

sum is all-even. Recall yi = x2
i mod n. More precisely, some subset of the yi, such as

ya1
,ya2

, . . . ,yaℓ
will have ya1

+ya2
+ · · ·+yaℓ

= z and z is an all-even Gödel vector.

This will yield a perfect square in the integers s2 = z, and so we can take the integer

square root s by dividing by two. Then we will have a product

ya1
ya2
· · ·yaℓ

= x2
a1

x2
a2
· · ·x2

aℓ
= (xa1

xa2
· · ·xaℓ

)2 = z = s2 mod n

and finally gcd(xa1
xa2
· · ·xaℓ

+ s,n) and gcd(xa1
xa2
· · ·xaℓ

− s,n) will give us the fac-

tors we desire, provided of course ±x 6= s mod n.

How can we find that linear combination? This will become the essence of the

Linear and Quadratic Sieve algorithms. But first, the author will justify the termi-

nology “Gödel Vectors.”

10.5.4 Historical Interlude

As we noted, there are many advantages to writing numbers in their factored

form. But this is only occasionally seen as a vector of exponents.

174 10 The Quadratic Sieve

Kurt Gödel showed how to write any finite-length logical sentence in any (count-

able) alphabet of symbols as a positive integer. Because the alphabet is countable,

each symbol can be identified with a positive integer. For example, in first order

logic, we could assign the five operators “and”=1, “or”=2, “not”=3, “implies”=4,

“iff”=5), and the two parenthesis to 6 and 7, and then have countably many vari-

ables x0 = 8,x1 = 9,x2 = 10, . . . ad infinitum. Then we could number the sentence

x1∧ (x2∨ x3), as {x1,∧,(,x2,∨,x3,)} and construct

29×31×56×710×112×1311×177

which is a 39-digit integer. But, every logical sentence, regardless of its length, is

identified by a positive integer this way, and two distinct sentences cannot map to the

same integer. This was a useful step in his proof of the famous Incompleteness The-

orem [124, Ch. III]. Furthermore, if you cap the length of the logical sentences used

(which Gödel did not), then you get vectors similar to ours here. Gödel considered

arbitrary-length vectors.

In honor of this very deep trick, and its profound consequences, we call these

vectors Gödel vectors. Pomerance calls them “exponent vectors” in [192].

10.5.5 Review of Null Spaces

If c1,c2, . . . ,cn are m-dimensional vectors then we can make a matrix M, whose

ith column is ci. In fact, M will have dimension m×n.

Let k = (k1,k2, . . . ,kn) be some n-dimensional vector. By the definitions of ma-

trix multiplication, we would have

Mk = k1c1 + k2c2 + · · ·+ kncn

which the reader is urged to verify. For example, if all the ks are 0, except kn = 1,

then Mk is the last column of M. Likewise, if all the ks are 0, except k1 = k2 = 1,

then Mk is the sum of the first two columns of M.

Now suppose that there were some linear combination of the vectors c1,c2, . . . ,cn

that made zero. For example a1c1 +a2c2 + · · ·+ancn = 0. Surely taking the coeffi-

cients of that linear combination, and making them into a vector (e.g. ki = ai) would

result in Mk = 0. Likewise, if there were some vector v such that Mv = 0 then

v1c1 + v2c2 + · · ·+ vncn = 0.

Recall, the set of vectors v such that Mv = 0 is called the null space of M. In

this sense, the null space of the matrix M is the set of coefficients of any linear

combinations of the column vectors of M that will make the zero vector.

Thus, we have established an isomorphism between the null space of M and the

set of linear combinations of its columns that sum to the zero vector. The coordinates

of the null space vector are precisely the coefficients of the linear combinations.

If the columns of M are linearly independent, then only the zero vector will be in

the null space. However, if the columns of M are linearly dependent, there will be

10.5 The Gödel Vectors 175

several vectors (at least 2 over GF(2)) in the null space, and each of these is a linear

combination of the columns to make the zero vector. See Section 27 on Page 87 for

additional review of null spaces, and Algorithm 5 on Page 87 describes how to find

the null space efficiently, from the RREF of M.

10.5.6 Constructing a Vector in the Even-Space

Suppose we now have M, the matrix where every column is a Gödel vector. Let

M2 be the matrix M reduced mod 2, and we shall use some algorithm (Gaussian

Elimination, Block Wiedemann, etc. . .) to find the null space of M2 in the field

GF(2). This is some set of vectors v such that M2v = 0 in GF(2), or

v1c′1 + v2c′2 + · · ·+ vnc′n = 0 mod 2

where c′i is the ith column of M2. Because this is the case, then

v1c1 + v2c2 + · · ·+ vncn = s

when calculated in the ordinary integers, and with ci being the ith column of M, will

produce s such that s is an integer vector, and s = 0 mod 2. Of course, this means

that s is all even. And because the vi are all 0 or 1, and the entries of M are all

non-negative, then all the entries of s are non-negative.

Note that the vi are either 0 or 1, because they came from a linear algebraic

operation mod 2. We can simplify our notation a lot by letting va1
,va2

, . . . ,vaℓ
be

precisely those entries of v that are 1. In other words, ℓ is the number of ones in v,

sometimes called the weight of v. All the other entries are zero, so

v1c1 + v2c2 + · · ·+ vncn = va1
ca1

+ va2
ca2

+ · · ·+ vancan = ca1
+ ca2

+ · · ·+ can = s

As noted, every vector v in the null space of M2 is a vector which produces an

all-non-negative-integer all-even s. Interpreted as a Gödel vector, then s is a perfect

square (because it has no odd exponents) and multiplying it by 1/2 produces an all

integer vector r. We can easily convert s and r back to integers s and r. Then we

have that r2 = s in the integers, so certainly it will be the case that r2 = s mod n.

Let the columns of M be the Gödel vectors of the squares we found in our search,

mod n. In other words, column ci is the Gödel vector of x2
i mod n. We know that

ca1
+ ca2

+ · · ·+ can = s

but that converts out of Gödel vector notation into

x2
a1

x2
a2
· · ·x2

aℓ
= s mod n =

(
xa1

xa2
· · ·xaℓ

)2

176 10 The Quadratic Sieve

and also r2 = s mod n, and so we need merely check that ±r 6= xa1
xa2
· · ·xaℓ

mod n

and baring those two disappointments, we know that gcd(xa1
xa2
· · ·xaℓ

− r,n) = p

and gcd(xa1
xa2
· · ·xaℓ

+ r,n) = q or vice-versa.

10.6 The Linear Sieve Algorithm

And so the algorithm can be thought of as in two stages. First, we generate lots of

squares mod N, search for those that are smooth, in the sense that their prime factor-

ization comes only from the first B primes. Here, B is a parameter of the algorithm

set in advance. If the square is smooth, we will store the square’s Gödel vector, as

well as the number itself. We will do this until we get some pre-set number of vec-

tors, nmax. Note, we reject squares that are insufficiently smooth in order to bound

the length of our Gödel vectors.

In the second stage, we will take those vectors as the columns of a matrix, reduce

the matrix mod 2, and find the matrix’s null space. Each vector in the null space

represents a linear combination of the columns that makes zero mod 2, or a linear

combination of the original columns that makes an all-even vector. Of course, an

all-even vector is a perfect square, call that s, and its square root r.

Then we reconstruct the number t by multiplying the xi that produced all the

vectors that are used with non-zero coefficient in the linear combination. We know

t2 = s mod N, and since r2 = s in the integers, then r2 = s mod N. Now we have

t2 = r2 mod N. We need only check that ±r 6= t mod N, and baring those two dis-

appointments, we are done. This algorithm is called the Linear Sieve because of its

dependance on linear algebra.

An important note is that if the product of the xai
s is less than

√
n, that the square

root in the ordinary integers r might actually be the product of the xai
, namely t,

because the operations to multiply the xai
s and square the answer might not “wrap

around” the modulus n. Therefore, we should confine our xs to [⌊√n⌋+ 1,n− 1],
to make it more likely that ±t 6= r. This point can be summarized by saying 22 = 4

mod any 100-digit prime, just as 22 = 4 in the integers.

Variants of the Quadratic Sieve which consider −1 to be “a prime” in the factor

base resolve this issue, and further, allow one to search both below and above
√

n.

10.6.1 Matrix Dimensions in the Linear & Quadratic Sieve

Note, the matrix will have B rows and nmax columns. Recall that a matrix is likely

to have a large null space if it has many more columns than rows. The dimension

of the null space is called the nullity of the matrix, and over GF(2), a nullity of k

means 2k vectors in the null space. A matrix of dimension B× (B + 10) would be

expected to have nullity between 10–13, (see Table 9.3 on Page 145) and so have

between 1024 and 8196 vectors in the null space. Roughly one half of these would

10.6 The Linear Sieve Algorithm 177

INPUT: A number N to be factored, and two parameters, B and nmax.

OUTPUT: The factors p and q so that N = pq.

1: L←{} and n← 0.

2: Let pB be the Bth prime number.

3: While n < nmax do

a. Generate a random x in {2,3, . . . ,N−1}.
b. Calculate y = x2 mod n.

c. Do an easy factorization of y, stopping after B primes.

• If y is not pB-smooth, reject it, and start a new iteration of the while loop.

• If y is pB-smooth

i. Calculate its Gödel vector g

ii. Insert (x,g) into the list L.

iii. n← n+1

Note: There are now exactly nmax entries in the list L.

Note: Above this point is “Stage One” and below this point is “Stage Two”.

4: Construct a matrix M, with each Gödel vector as a column.

Note: The matrix M will have dimension B×nmax.

5: Reduce M mod 2 and call that M2.

6: Find the null space of M2 and call it N .

7: For each v ∈N do

a. g← 0,r← 1

b. For i = 1,2, . . .nmax do

• if vi = 1 then

i. Fetch (xi,gi) from the list L.

ii. g← g+ ci

iii. t← txi

c. h← 1
2

g

Note: Since g is composed of only all-even non-negative integers, h is composed of only

non-negative integers also.

d. Convert h into an integer r. Note r2 has Gödel vector g.

e. If r =±t mod N then reject, go to the next v.

f. Otherwise output p = gcd(r− t,N) and q = gcd(r + t,N).

8: Fail.

Algorithm 20: The Linear Sieve [Richard Schroeppel]

be expected to have ±r 6= t mod n and so we are very likely to find at least one,

which is all that we require.

Let us assume we set nmax = B+10. What if B is too small? Then it may be very

hard to find x such that x2 mod n has no primes in its factorization above pB. What

if we make B too large? Finding the null space of a 10,000× 10,000 matrix is ex-

tremely fast with the Method of Four Russians (see Chapter 9). Even for 100,000×
100,000 this is a relatively simple computation. But at 1,000,000×1,000,000 we

run into the problem that that the matrix has one trillion entries. Even storing 8

entries per byte this is 125 gigabytes.

Luckily, the matrix will be extremely sparse. But we are required to use a sparse

matrix method, because if we try the Method of Four Russians or a Gaussian Elim-

178 10 The Quadratic Sieve

ination method, the matrix will rapidly become dense (a process called “fill-in”).

Once the matrix is dense, we will surely run out of memory on the computer.

Thus the Linear Sieve and Quadratic Sieve algorithms gave new impetus to an en-

tire area of research on sparse matrices over finite fields, particularly GF(2), which

then found other uses. Incidentally, the Number Field Sieve can also make use of

very sparse finite field matrices—in fact the structure of the matrices is essentially

the same. Carl Pomerance (the inventor of the Quadratic Sieve) invented a null-

space finding algorithm specifically for these sorts of matrices, and it is described

in Section D.6 on Page 327.

10.6.2 The Running Time

The dilemma is that it is not easy to establish the number of x which must be

squared to get nmax smooth values of x2 mod n. Therefore, let us say R values of x

are attempted, and write the running time in terms of R.

We must test divide each x by all the primes less than B. There are roughly

B/ logB of those. If a number is of the form p
e1
1 p

e2
2 p

e3
3 we must divide by p1 exactly

e1 + 1 times, and by p2 we must divide e2 + 1 times, and so forth. However, of the

numbers divisible by pi, roughly 1/pi of those are divisible by p2
i and of those, 1/pi

of them are divisible by p3
i , and so forth.

We calculated in Section 10.2.2.1 on Page 168 that roughly 2 divisions of each

prime would be the expected value in general. Thus 2 divisions per prime, and

B/ logB primes available means that 2RB/ logB integer divisions must be made.

Of course, there are many ways to speed this up and we have been a bit naı̈ve in

our approach, but the Quadratic Sieve will be categorically much faster at generating

these squares, and so we will not spend time discussing how to improve the Linear

Sieve.

10.7 The Example, Revisited

The numbers we have selected in Section 10.4.1 on Page 171 produce the fol-
lowing squares and smooth factorizations.

x2
1 = 2352 = 6240 = 25×3×5×13

x2
2 = 2962 = 9240 = 23×3×5×7×11

x2
3 = 5412 = 8568 = 23×32×7×17

x2
4 = 5682 = 9120 = 25×3×5×19

x2
5 = 7532 = 8580 = 22×3×5×11×13

x2
6 = 11242 = 9360 = 24×32×5×13

x2
7 = 12752 = 9120 = 25×3×5×19

x2
8 = 16702 = 6552 = 23×32×7×13

10.7 The Example, Revisited 179

x2
9 = 17632 = 2520 = 23×32×5×7

x10 = 17652 = 9576 = 23×32×7×19

x11 = 21632 = 5400 = 23×33×52

Taking the Gödel vectors, and writing them vertically, we get the following matrix
(mod 2)

M2 =














1 1 1 1 0 0 1 1 1 1 1

1 1 0 1 1 0 1 0 0 0 1

1 1 0 1 1 1 1 0 1 0 0

0 1 1 0 0 0 0 1 1 1 0

0 1 0 0 1 0 0 0 0 0 0

1 0 0 0 1 1 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0 1 0














After reducing it with Gaussian Elimination, we find it has nullity 4, and the
null-space basis vectors are:

n1 = (0,0,0,1,0,0,1,0,0,0,0)

n2 = (0,1,0,0,1,0,0,1,0,0,0)

n3 = (0,1,0,0,1,1,0,0,1,0,0)

n4 = (1,1,0,1,1,0,0,0,0,1,0)

and so we will find 16 vectors in the null space, one of which is the zero vector.

Just taking n1 on its own suggests x4 and x7 should be multiplied. We get

x2
4x2

7 = 5682×12752 = 9019×9019

but gcd(568×1275+9019,9797) = 1. Bad luck!

Just taking n2 on its own suggests x2, x5, and x8 should be multiplied. We get

x2
2x2

5x2
8 = 2962×7532×16702

= 9240×8580×6552

= 519437318400 = 7207202

and gcd(296×753×1670+720720,9797) = 1. Again, bad luck.

Just taking n3 on its own suggests x2, x5, x6, and x9 should be multiplied. We get

x2
2x2

5x2
6x2

9 = 2962×7532×11242×17632

= 9240×8580×9360×2520

= 1869974346240000 = 432432002

and the correct factorization is produced:

gcd(296×753×1124×1763+43243200,9797) = 101

gcd(296×753×1124×1763+43243200,9797) = 97

180 10 The Quadratic Sieve

10.8 Rapidly Generating Smooth Squares

First off, finding x2 mod n is equivalent to finding x2−n in the range n < x2 < 2n

or more plainly
√

n < x <
√

2n. For the type of n we are discussing in RSA (roughly

100 to 1000 digits), we can’t even search a fraction of that range, so it is safe to

restrict ourselves to it.

For any particular prime p, either n is a quadratic residue mod p or it is not.

When one says “n is a quadratic residue mod p”, it means there is some s such that

s2 = n mod p. There are three cases.

• First, no such s exists. In that case, we can remove p from consideration entirely.

This p will not divide any values of x2−n and so it certainly will not divide the

smooth values. To see this, suppose p divides x2−n. Then x2−n = 0 mod p and

x2 = n mod p. Thus we have produced a value x so we know n is a quadratic

residue mod p. The contrapositive is that if n is not a quadratic residue mod p,

then p does not divide x2−n, and x2−n 6= 0 mod p.

• Second, the s exists and is zero. Then this means 02 = n mod p or p divides n. In

this very lucky outcome, the factors are p and n/p and we are done.

• In the third case, 0 < s < p. Now suppose p divides x2 − n. Again x2 − n =
0 mod p or x2 = n mod p which implies x2 = s2 mod p. This further results in

x2− s2 = 0 mod p or (x + s)(x− s) = 0 mod p. Since operating mod p means

we are operating in a field, then we know either x− s = 0 mod p or x + s =
0 mod p, which implies x =±s mod p. It is noteworthy that in this case the only

two solutions will be s2 = (−s)2 = n mod p.

Therefore, when handling divisibility by p, we can merely check twice every p

when searching for available x. This is much like the sieve of Eratosthenes. The first

integer in the range [a,b] to be 0 mod p will be ⌈a/p⌉ p. Therefore we can check

x ∈ {⌈a/p⌉ p− s,⌈a/p⌉ p+ s,⌈a/p⌉ p+ p− s,⌈a/p⌉ p+ p+ s,⌈a/p⌉ p+2p− s,

⌈a/p⌉ p+2p+ s,⌈a/p⌉ p+3p− s,⌈a/p⌉ p+3p+ s, . . .}

which is a tremendous savings over checking every possible x.

We must define what we mean by checking. We know these values will be di-

visible by p. Therefore, we can (in the spirit of the smooth version of the sieve of

Eratosthenes given in Algorithm 18 on Page 168) make a list of all the integers in

the range [a,b], and divide through by p those selected by the above sequence.

Also like the sieve of Eratosthenes, we must consider numbers that are divisible

by p2, p3, . . . if we are to be searching for smooth numbers. Therefore, after the first

division, we divide again. If it is an integer still, we continue to divide until it is not

an integer. We keep the last value that is an integer, and store that. This is precisely

the algorithm “Process(x, p)” given in Algorithm 16 on Page 165.

10.8 Rapidly Generating Smooth Squares 181

Quadratic Residues

All that remains is we must specify how to detect if n is a quadratic residue mod

p. The following lemma can be found in [101, Ch. 17.3].

Lemma 66. If n 6= 0 mod p then n(p−1)/2 = 1 if and only if n is a quadratic residue

mod p.

10.8.1 New Strategy

Therefore, we have the following strategy. Assemble a “factor base” of primes,

all less than pB, such that n is a quadratic residue mod p. Make a list of all the

integers x from [a,b] along with x2− n. Note that
√

n < a < b <
√

2n, so x2− n

is equivalent to x2 mod n. For each prime in the factor base, search the sequence

mentioned above. For each x in the sequence, divide by p until the result is no

longer an integer, and then store the last integer result.

After all the primes in the “factor base” have been used, any 1s in the list corre-

spond to smooth values of x2−n. We collect these smooth numbers, compute their

Gödel vectors, and proceed with the linear algebra “Stage Two” as before.

For any specific p, we must recall that (2p−1)/(p−1)≈ 2 divisions will be used

for each call of process. There will be roughly (b−a)/p iterations of the loop, and

so 2(b− a)/p calls to Process(x, p) will be made, and this comes to (b− a)(4p−
2)/(p2− p)≈ 4(b−a)/p integer divisions. See Section 10.2.2.1 on Page 168.

We will do this for all the primes less than pB that have n as a quadratic residue

mod p. Here, it is handy to use the amazing result that the sum of the reciprocals of

the primes less than pB is equal to roughly loglog pB, where log indicates the natural

logarithm. Note that summing up 4(b−a)/p for a subset of all primes less than pB

is surely less than 4(b−a) times summing up 1/p for all primes less than pB. Thus

we have proven.

Theorem 67 (Carl Pomerance). At most∼ 4(b−a) log log pB integer divisions will

be used by Stage 1 of the Quadratic Sieve to identify the values of x∈ [a,b] such that

x2−n is pB-smooth.

When compared to 2RB/ logB found in Section 10.6.2 on Page 178, one can see

that 4R log logB is a great improvement. The coefficients can be improved. There

are many optimizations, including

• Allowing one or two “medium sized primes”, in addition to smooth numbers.

• Allow −1 to be a “prime” in the factor base.

• Using polynomials other than x2−n.

• One can take

gcd(n,2×3×5×7×11×13×17×19×23×29)

182 10 The Quadratic Sieve

INPUT: The integer n to be factored, a largest acceptable prime pB, a long range [a,b] to be

searched.

OUTPUT: The set of positive integers x in [a,b] such that x2−n is pB-smooth

Note: Stage 0, Determine a Factor Base.

1: F ←{}
2: For each prime p≤ pB do

a. Calculate z = n(p−1)/2 mod p.

• If z =−1, skip to next prime.

• If z = 1, insert p into F .

3: Create a sufficiently set of large intervals [a,b] that are non-overlapping, and are contained in

(
√

n,
√

2n).
Note: Stage 1, Generate smooth x.

4: For each interval [a,b] (often given to separate CPUs) do

a. For i = a to b do

i. Residue[i−a]← i2−n

b. For each prime p ∈ F do

i. Find s such that s2 = n mod p.

ii. i← ⌊a/p⌋ p

iii. While i− s≤ b do

• if (a < i− s < b) then Residue[i−a]← Process(i− s, p)

• if (a < i+ s < b) then Residue[i−a]←Process(i+ s, p)

Note: Process is defined in Algorithm 16 on Page 165.

• i← i+ p

c. L←{}
d. For i = a to b do

• if Residue[i−a] = 1 then insert i into the set L.

e. Output the list L.

5: Collect and union together all the lists L.

6: For each x ∈ L, calculate the Gödel vector of x2−n.

Note: Stage 2, Find the Nullspace mod 2, take gcds.

Note: Identical from here onward to the Linear Sieve.

7: Construct a matrix M, with each Gödel vector as a column.

Note: The matrix M will have dimension |F |× |L|.
8: Reduce M mod 2 and call that M2.

9: Find the null space of M2 and call it N .

10: For each v ∈N do

a. g← 0,r← 1

b. For i = 1,2, . . . |L| do

• if vi = 1 then

i. Fetch (xi,gi) from the list L.

ii. g← g+ ci

iii. t← txi

c. h← 1
2

g

Note: Since g is all-even non-negative integers, h is all non-negative integers also.

d. Convert h into an integer r. Note r2 has Gödel vector g.

e. If r2 =±t2 mod N then too bad, go to the next v.

f. Otherwise output p = gcd(r− t,N) and q = gcd(r + t,N).

Algorithm 21: The Quadratic Sieve [Carl Pomerance]

10.10 Historical Notes 183

several times to “batch process” the first 10 primes, which after all, are the most

common. The next prime is 31, and so it is better to loop through 2 out of every

31 entries in the range [a,b] than 2 out of every 3 or 5.

• Instead of using “process” one can merely divide by p. This means that non-

square-free smooth numbers are not detected, but 1/ζ (2) = 6/π2 ≈ 0.6079 of

integers are square-free. Or one can merely divide by p and p2, failing to detect

smooth numbers that are not cube-free. Then 1/ζ (3) ≈ 0.8319 of integers are

cube-free [223], which is more tolerable.

• . . . and many other variations.

10.9 Further Reading

The interested reader may find the following useful

• “A Tale of Two Sieves”, by Carl Pomerance, published in the December 1996

issue of the Notices of the American Mathematical Society [192]. This is an

expository introduction.

• “The Magic Words are Squeamish Ossifrage” by Derek Atkins, Michael Graff,

Arjen Lenstra and Paul Leyland, published in ASIACRYPT in 1994 [27].

• For the application to RSA, Chapter 6 “The RSA Algorithm” in Introduction to

Cryptography with Coding Theory by Wade Trappe and Lawrence Washington

[216]. This includes a detailed description of the linear sieve, which is denoted

there as the quadratic sieve.

• Factorization and Primality Testing by David Bressoud, a book published in the

“Undergraduate Texts in Mathematics” series by Springer-Verlag.

• The Development of the Number Field Sieve, a book of several authors edited by

the Lenstra brothers [159], published in 1993.

10.10 Historical Notes

Maurice Kraitchik first used differences of the form x2− y2 = kn for factoring

[192], but factoring using the difference of two squares goes back to Pierre de Fer-

mat in the 17th century (see Section 10.4 on Page 170), with an intermediate method

due to John Dixon [99]. The algorithm presented here was designed by Carl Pomer-

ance [192], but first implemented by Joseph Gerver [122]. There is also the Pollard

“rho” Method [63, Ch. 31.9]. Other examples of factoring algorithms include the

continued fraction method [181], the Elliptic Curve Factoring Method (which is

better for numbers that are not the product of two primes, but are not very smooth

either) [216, Ch. 16.3], and the Number Field Sieve (the current optimal method)

[192]. At Eurocrypt 2009, it seems that the Elliptic Curve Factoring Method might

be making a comeback, as it can benefit from the ultrahigh-speed massively-parallel

GPUs (Graphical Processing Units) in modern graphics cards (see [45]).

Chapter 11

Strategies for Polynomial Systems

11.1 Why Solve Polynomial Systems of Equations over Finite

Fields?

Before we devote numerous pages to the topic of polynomial systems of equa-

tions over finite fields, we should pause and ask why one would want to do this. This

will give us an opportunity to highlight the several applications of this interesting

area.

Before that, however, an important distinction must be made. In this book, when

one has a system of equations over the finite field GF(pn), we assume that one is

interested only in those solutions which are also elements of GF(pn). If one is also

interested in solutions in some extension field, (e.g. GF(pm) with n|m), then since

GF(pn) is a subfield of GF(pm), it is safe to consider the system of equations as if

it were over GF(pm), or at worse the splitting field.

Algebraic Cryptanalysis The previous few chapters of this book demonstrate the

crucial role of polynomial systems of equations in block cipher design and anal-

ysis, due to the necessity of engaging in or thwarting algebraic attacks.

Pure Mathematics Polynomials and finite fields are both simple, elegant objects.

Relationships among them are interesting in their own right. But the integers

are a still more basic and fundamental domain, and one can inquire if a polyno-

mial system has any solutions over the integers. These are called “diophantine”

equations, for1 ∆ιoφαντoς o ’Aλεξ ανδρευς , the Greek mathematician who

first studied these problems. In particular, if a set of polynomial equations with

integer coefficients has a solution over Z, then the polynomial system formed

by taking the image of the coefficients “mod p” has a solution in the field of

p elements, GF(p). One solution is, in fact, the image of the original solution

“mod p”. Therefore, by using the contrapositive, if the system has no solutions

in GF(p), then it has no solutions in Z. For small numbers of variables, it might

be much easier to solve in GF(p) than over Z.

1 Diophantos of Alexandria, 3rd century AD.

© Springer Science + Business Media, LLC 2009

G.V. Bard, Algebraic Cryptanalysis, DOI: 10.1007/978-0-387-88757-9_11 187

188 11 Strategies for Polynomial Systems

Multivariate Cryptography It is believed that solving an arbitrary system of poly-

nomial equations is hard (in fact, if a polynomial time algorithm for general

polynomial systems of equations is found, then P = NP, which would be a sur-

prise). However, evaluating a polynomial at a point (or a vector, if the system

is multivariate) is easy. This creates a one-way function, and one-way functions

are important building blocks in the construction of cryptographic primitives.

So while polynomials are more associated in cryptology with breaking codes,

the topic of multivariate cryptography wishes to use facts from this discipline

in making codes. There have been several examples, such as QUAD: a stream

cipher [42], SFLASH: a signature scheme [72, 78, 70], and several public-key

systems like HFE [65, 187], as summarized in [97, Chs. 2,3,4,6].

The Universal Map It turns out that any map, from any finite set to any other

finite set, can be written as a polynomial system of equations over GF(p), for

any prime p. This extremely general result will be proven as Theorem 72 on

Page 190. Being able to solve such systems means that one can compute pre-

images under these arbitrary maps, no matter how strange or intricate they might

be.

NP-Completeness Oracle All NP-Complete problems are polynomially reducible

to each other. This means that if one can solve any particular NP-Complete prob-

lem in time upper-bounded by f (n), for input size n, then for any other NP-

Complete problem there exist polynomials p1(n), p2(n), p3(n) such that the so-

lution time is upper-bounded by p1(n)+ p2(f (p3(n))). Of course, if f is a poly-

nomial then P = NP, which would be a surprise, but there may be other efficient

approximation algorithms, probabilistic algorithms, heuristic methods, or tech-

niques that work in special cases.

Graph Coloring The problem of finding a coloring of a graph is searching for

an assignment of one of c colors to each vertex. It is required that if an edge

connects vi and v j, that the color of vi be distinct from the color of v j. This

problem can be solved as a sparse system of polynomial equations over GF(q)
for any q≥ c. If c > 2 the problem is also NP-hard, and even detecting if such a

coloring exists is NP-Complete. However, there are special cases which are very

useful in applications, which can be colored rapidly, see Section C.4 on Page 318.

Radio Channel Assignments The Graph Coloring problem is useful not only in

drawing colorful atlases, but also for radio channel assignments. Regions, ir-

regularly shaped due to mountains and hills, are vertices, and edges are drawn

between regions where broadcasts upon the same frequency would result in non-

trivial interference. The graph is colored, and each collection of vertices with the

same color is assigned the same set of frequencies.

Compiler Optimization The optimization of code to a specific microprocessor

during compiling is usually viewed as an empirical process—a series of shortcuts

which collectively improve running time. But register allocation, just as an ex-

ample, can be done via graph coloring. More detail will be given in Section C.3.2

on Page 318.

11.2 Universal Maps 189

11.2 Universal Maps

Like most material in this chapter, the author believes this has been known for a

very long time.

Theorem 68. Let F be a finite field of prime order p. Any map from a finite-

dimensional F-vector space V to F can be written as a polynomial with coefficients

in F.

Proof. Consider the set Φ of all maps from V to F , such that all values map to zero,

except for one privileged element x ∈V , which is mapped to one. This map will be

called φx, and there is one for each x ∈V .

Obviously, Φ is a basis for the set of all maps from V to F , in the sense that

every map from V to F can be written as a linear combination of φx’s. In fact, for

any f : V → F , the coefficient of φx in the linear combination is merely the value of

f (x). Furthermore, one cannot construct φx as a linear combination of all the other

maps in Φ−{φx} because all of those maps evaluate to 0 at x, and so therefore any

linear combination of them will also.

Therefore, in order to prove the theorem, it suffices to show that φx is a

polynomial, because a linear combination of polynomials is a polynomial. Let

x ∈ V be equal to (x1, . . . ,xn). Using Corollary 94 on Page 315, we can write

(yi− xi)
p−1−1 = 0, which is non-zero if and only if yi = xi. The product

n

Π
i=1

(
(yi− xi)

p−1−1
)

is non-zero if and only if all n terms are each non-zero. This happens if and only if

yi = xi for all i ∈ {1,2, . . . ,n}.
Thus we can write:

ψx(y1,y2, . . . ,yn) =
n

Π
i=1

(
(yi− xi)

p−1−1
)

which is zero everywhere but x, where its value is non-zero and finally,

φx(y1,y2, . . . ,yn) =
ψx(y1,y2, . . . ,yn)

ψx(x1,x2, . . . ,xn)

which is clearly a polynomial, since the demonenator is a constant. ⊓⊔

These φx functions are the finite-field analog of Lagrange polynomials. They are

sometimes called needle functions or haystack functions.

Corollary 69. Let F be a finite field of characteristic p. Any map from a finite-

dimensional F-vector space V to GF(p) can be written as a polynomial with coef-

ficients in GF(p).

Proof. Here we have changed the requirement on the field F . In the previous the-

orem, it had to be of order p. Now it is merely of characteristic p, but still finite.

190 11 Strategies for Polynomial Systems

The reason for this is that every finite field of characteristic p is a GF(p)-vector

space. And so a map from GF(pn)m → GF(p) can be rewritten as a map from

GF(p)mn→GF(p). Then previous work yields the required condition. ⊓⊔

Corollary 70. Let F be a finite field of characteristic p. Any map f from a finite-

dimensional F-vector space V to a finite-dimensional GF(p)-vector space U, can

be written as a polynomial system of equations with coefficients in GF(p).

Proof. Suppose U is dimension m over GF(p). Then for any x ∈ F , f (x) =
(u1,u2, . . . ,um) with each ui ∈ GF(p). Therefore we can write m functions,

f1(x), f2(x), . . . , fm(x), with fi(x) equal to the ith element of the vector f (x).
Each of these fi(x) is a map from V to GF(p), and so is a polynomial with coeffi-

cents in GF(p). Therefore, taken together, one has m polynomials with coefficients

in GF(p), or a polynomial system of equations. ⊓⊔

Corollary 71. Let F,G be finite fields of characteristic p. Any map f from a finite-

dimensional F-vector space V to a finite-dimensional G-vector space U, can be

written as a polynomial system of equations with coefficients in GF(p).

Proof. Suppose G = GF(pm), and U = GF(pm)n. Then since G can be written as

an m-dimensional vector space over GF(p), surely U can be written as an mn-

dimensional vector space over GF(p). Then we apply the previous corollary. ⊓⊔

Up to this point, if the map had certain properties pertaining to addition (e.g. if

f (x+y) = f (x)+ f (y)) then all the polynomials representations would continue to

respect this property, for some choice of basis during the conversion from the finite

field to a vector space over the base field. That is because the addition operation of

GF(pn) is isomorphic to that of GF(p)n. But any multiplication properties, such as

f (kx) = k f (x), might not be preserved.

This final theorem, which includes as special cases all the previous corollaries

following from Theorem 68 on Page 189, could have been proven earlier, but drops

the addition preservation. Yet it allows one to pick any prime number for the char-

acteristic of the field.

Theorem 72 (Universal Mapping Theorem). Any map from a finite set S to a finite

set T can be written as a polynomial system of equations over GF(p), for any prime

p.

Proof. Select a prime p. Let n be a positive integer such that pn ≥ |S| and likewise

m such that pm ≥ |T |. Label the elements of S with elements from GF(pn) and the

elements of T with elements from GF(pm). For the remaining elements of GF(pn),
select any values from GF(pm) that you like as outputs. Proceed as in the previous

corollary. ⊓⊔

And thus, any map, from any finite set to any other finite set, can be written as

a polynomial system of equations over GF(p), for any prime p. This is in stark

contast to Z→ Z, where for example

11.3 Polynomials over GF(2) 191

f (x) =

{
1 x if is a perfect square

0 otherwise

which cannot be a polynomial, because it has infinitely many zeros. In Z[x], only

the zero polynomial has infinitely many zeros.

11.3 Polynomials over GF(2)

It is interesting to reflect on what polynomials over GF(2) look like, and what

simple notions like equality signify.

11.3.1 Exponents: x2 = x

First, since 1×1 = 1 and 0×0 = 0 then x2 = x for all elements of GF(2). Like-

wise, xk = x for all k > 0. Therefore, for any given polynomial in n variables, if we

change all the non-zero exponents to one, we will not change its value on any of the

2n possible inputs.

11.3.2 Equivalent versus Identical Polynomials

Normally, when cryptographers discuss GF(2)-polynomials, they would con-

sider any two polynomials with n variables to be equal if they agree on all 2n possible

inputs. (They might not match on inputs from extension fields, but that is another

matter entirely). Mathematicians sometimes point out that x2y2 and xy, for example,

are in fact distinct polynomials. There are two ways around this dilema.

First, define a relation≈ on the set of GF(2)-polynomials, with f ≈ g if and only

if they have the same variables, and they agree on all inputs (i.e. f (x) = g(x) for all x

in the domain). This map is obviously reflexive and symmetric. The transitive prop-

erty follows from the transitive property of equality. Therefore this is an equivalence

relation. Throughout this book, we will use = to mean precisely this equivalence,

denoted ≈ here. Thus over GF(2), in this book, x2y2 = xy.

The other way is to simply “mod out” by the non-zero polynomials which are

zero on all their inputs. Call these polynomials “zero-like.” These are x2− x, y2−
y, et cetera. . . . Thus, strictly speaking, when working with n-dimensional GF(2)-
polynomials in this book, we are not working in GF(2)[x1, . . . ,xn] but rather in

GF(2)[x1, . . . ,xn]/
(
x2

1− x1,x
2
2− x2, . . . ,x

2
n− xn

)

The set that we are “mod”ing out by is the set of all polynomials which evaluate

to zero on all their inputs—the zero-like polynomials. It is clear that the sum of

192 11 Strategies for Polynomial Systems

two of zero-like polynomials also evaluates to zero on all inputs, and the product of

a zero-like polynomial with any other polynomial will also evaluate to zero on all

inputs. Thus the set of zero-like polynomials is an ideal, and we are permitted to

“mod” out by it, and still have a ring.

The ideal is not prime, because x− 1 is not zero-like, and x is not zero-like, but

x(x−1) = x2−x is zero-like. Thus our ring has zero-divisors, including x and x−1.

11.3.3 Coefficients

It should be noted that since the only non-zero element of GF(2) is 1, there is

never a need to write a coefficient. If the coefficient of a monomial is zero, we omit

the monomial, as always. If it is one, we need not write one, of course.

Thus a polynomial is either a sum of monomials, where each monomial is a

product of variables, or zero, with the possibility of a “plus 1” added to either case.

For example, x+ yz+wxz+1.

11.3.4 Linear Combinations

Since the only possible coefficients are 1 or 0, the concept of linear combination

is a bit peculiar. The set of linear combinations of n polynomials will consists of

assignments of coefficients (1 or 0) to these n polynomials, which are then added

together. Some of the n polynomials will get 0, which we ignore, and others will

get 1. Thus we can identify the linear combination itself with the subset of the n

polynomials which happen to get coefficient 1.

Therefore, there are as many linear combinations of n polynomials as there are

subsets of those n polynomials, which is, of course, a total of 2n choices. It turns

out that one can rapidly enumerate these 2n−1 non-zero polynomials. In fact, this

will be a crucial step in the Method of Four Russians, explained in Section 9.2 on

Page 135.

11.4 Degree Reduction Techniques

Unlike most of this book, this section should be considered over any field what-

soever. This includes R, Q, C, Q, or the field of rational functions over those fields,

or any other field.

When solving polynomial systems of equations, over finite fields or over the ra-

tional numbers, the number of equations, number of variables, and the maximum

degree are the crucial measures of difficulty. This will be discussed in more detail

in Section 11.6 on Page 203. However, we prove below that one can write a second

11.4 Degree Reduction Techniques 193

system of equations, with a solution set in bijection with the first, so that the degree

of all equations in the second system is at most two. Furthermore, we give an al-

gorithm which accomplishes this conversion. We also show that the number of new

equations and new variables added to the system to accomplish this, is polynomial

in the number of original variables, for any fixed maximum degree of the original

system.

All this is accomplished by using the very old trick: w = abcd if and only if

x1 = ab, x2 = x1c, and x3 = x2d = w. And so, if we add the variables x1,x2,x3 to the

system, and those three equations, we can substitute x3 anywhere when we see w.

Repeatedly doing this introduces no spurious solutions, destroys no solutions, and

eventually drops the degree to two, which we will prove shortly.

This technique undoubtedly has been known for a long time. At the least, it is

used in [33]. But we are not aware of any proof or complexity calculations. For an

example of this algorithm “in action,” see Section 2.7 on Page 14.

11.4.1 An Easy but Hard-to-State Condition

Consider an Algorithm A which takes a system of equations as an input, and

outputs a new system of equations (with m′ equations in n′ unknowns instead of m

equations and n unknowns). It will also output a function φ , such that φ : Fn′ → Fn.

It is required that if x’ is a solution of the new system then φ(x′) is a solution of

the old system. Likewise the algorithm outputs a ψ such that if x is a solution to

the old system of equations, then ψ(x) is a solution to the new system of equations.

Furthermore, both φ and ψ must be injective.

Now suppose Algorithm A converts the second system to a third system in m′′

equations and n′′ unknowns, with a function φ ′ such that for any solution x′′ to the

third system, φ ′(x′′) is a solution to the second system. And it outputs a ψ ′ such that

if x′ is a solution to the second system then ψ ′(x′) is a solution to the third system.

It is clear that if x′′ is a solution to the third system, then φ(φ ′(x′′)) is a solution

to the first system. Likewise, if x is a solution to the first system that ψ ′(ψ(x)) is a

solution to the third.

So if we construct an Algorithm A that meets the specified conditions, then we

can freely apply that Algorithm as many times as we like. We could say that “re-

peated evaluations of Algorithm A introduce no spurious solutions and destroy no

solutions,” because the solutions of the first are in bijection with the solutions of the

last.

We have proven:

Theorem 73. If Algorithm A takes as input a system of m polynomial equations in

n unknowns, over F, and outputs

• a system of m′ equations in n′ unknowns, also over F, and

• an injective map φ : Fn→Fn′ such that if x solves the old system, then φ(x) solves

the new system, and

194 11 Strategies for Polynomial Systems

• an injective map ψ : Fn′ → Fn such that if x′ solves the new system then ψ(x′)
solves the old system,

then repeated evaluations of Algorithm A neither create spurious solutions nor de-

stroy solutions. That is to say that the solution set, regardless of the number of

evaluations of A, is in bijection with the original solution set.

11.4.2 An Algorithm that meets this Condition

Algorithm A works as follows. If no equation has a monomial of degree greater

than 2, then terminate. Otherwise, call this monomial w. For all equations, in the

system, we can write

fi(x1, . . . ,xn) = gi(x1, . . . ,xn)+ ciw

for some constant ci, in such a way as the monomial w does not appear in gi. If w

already does not appear in fi, we choose ci = 0 otherwise we choose ci to be the

coefficient of w in fi. Then gi = fi− ciw and so it will be the case that w does not

appear in gi

Let the degree of w be d, and recall d ≥ 3, because that is how we chose w.

Then w = xa1
xa2
· · ·xad

. Note the a1, . . . ,ad are integer indexes, in the range [1,n].
We introduce the following new variables, r1, . . . ,rd−2 as dummy variables.

And we create the following new equations:

0 = xa1
xa2
− r1

0 = r1xa3
− r2

0 = r2xa4
− r3

...
...

...

0 = rd−4xad−2
− rd−3

0 = rd−3xad−1
− rd−2

and furthermore note that w = rd−2xad
.

We will append the first d−2 of these to the system of equations, and use rd−2xad

in place of w. This will introduce no terms of degree 3 or higher. We do not ap-

pend the equation w = rd−2xad
. Also, these equations are all satisfied if and only if

ri−1xai+1
= ri. This means all can be satisfied if and only if

xa1
xa2

= r1; r1xa3
= r2; r2xa4

= r3; · · · ; rd−2xad
= w

By substitution, this means that the equations can only be satisfied if

w = xa1
xa2

xa3
· · ·xad

11.4 Degree Reduction Techniques 195

Therefore it is safe to substitute the +ci, jw with +ci, jrd−2xad
. This is because in

any satisfying solution, rd−2xad
= w, and the other equations are unchanged.

In the input we had m equations. We now have m + d−2 equations: The first m

equations are the f1(x) = 0, f2(x) = 0, . . . , fm(x) = 0, and the next d− 2 are those

written above. Previously, we had n variables. We now have n+d−2 variables, the

additional d−2 unknowns being the r’s.

Suppose x = (x1,x2, . . . ,xn) is a solution to the old system. Then let r1 =
xa1

xa2
and ri = ri−1xai+1

, for i = 2,3, . . . ,d − 2. Then define ψ(x) = x′ =
(x1,x2, . . . ,xn,r1,r2, . . . ,rd−2). Clearly, ψ(x) is a solution to the new system of equa-

tions.

If x′ = (x′1,x
′
2, . . . ,x

′
n+d−2) is a solution to the new system, then simply lop off the

last d−2 values and let φ(x′) = (x′1,x
′
2, . . . ,x

′
n). Since x′ satisfied all the new equa-

tions, including the first m of them, then it satisfies the old equations too, because

the old equations are the first m of the new equations. Note this is only possible

because the first m equations of the new system (i.e. the equations of the old sys-

tem) do not contain the variables r1,r2, . . . ,rd−2. Therefore those m equations “do

not care” what values were assigned to those variables.

The injectivity of φ is clear, because if φ(x′) = φ(y′), then the first n terms of x′

must equal the first n terms of y′, because that is what φ does (truncation). The other

d− 2 terms are calculated soley from these, and so they are also equal. Therefore

x′ = y′.
The injectivity of ψ is even simpler. If ψ(x) = ψ(y), then in particular ψ(x) and

ψ(y) agree on the first n terms. But the first n terms of ψ(x) are all n terms of x, and

the first n terms of ψ(y) are all n terms of y. Thus x = y.

Finally, note that the number of cubic or higher degree monomials has dropped

by one since w was removed.

Since there are finitely many equations, and finitely many monomials per equa-

tion, the entire system has finitely many cubic or higher degree monomials. Thus

the algorithm terminates in finitely many steps.

11.4.3 Interpretation

So we have found such an Algorithm A that satisfies our theorem. If z distinct

cubic and higher degree monomials occur in the system of equations, then observe

that each iteration of the algorithm reduces by exactly 1 the number of cubic and

higher degree monomials. So after z iterations, there will only be terms of degree 2

or 1, and constants. By the theorem, any solutions to the outputted system will give

rise to solutions to the original system (via the φ ’s), and vice versa (via the ψ’s). No

solutions are created and destroyed.

The number of equations and variables added is D− 2z, where D is the sum of

the degrees of all of the cubic and higher monomials that exist somewhere in the

system, never counting the same monomial twice. Furthermore, z is the number of

such unique cubic and higher monomials.

196 11 Strategies for Polynomial Systems

11.4.4 Summary

Surely, this algorithm will be useful to those who use Gröbner Basis algorithms

to solve systems of polynomial equations, because many such methods have running

time dependent on the degree of the system of equations. But more importantly, we

have proven the theorem

Theorem 74. If f1(x1, . . . ,xn) = 0, f2(x1, . . . ,xn) = 0, . . . , fm(x1, . . . ,xn) = 0 is a

system of equations, then there is another system of equations g1(x1, . . . ,xn′) =
0,g2(x1, . . . ,xn′) = 0, . . . ,gm′(x1, . . . ,xn′) = 0 with solutions in bijection with the sys-

tem of the f ’s, but with degree at most 2.

Let the number of monomials of degree 3 or higher which have non-zero coef-

ficient somewhere in the system of the f ’s be z. Let the sum of their degrees be D.

Then m′ ≤ m+D−2z and n′ ≤ n+D−2z.

11.4.5 Detour: Asymptotics of the “Choose” Function

To properly calculate the complexity of this algorithm, we need the following

lemma.

Lemma 75. The value of
(

a
b

)
, for sufficiently large a is approximately

1√
2πb

(

1+
b

a−b

)a−b+1/2(a

b

)b

Proof. Note, that Sterling’s Approximation is x!≈ xxe−x
√

2πx. With that in mind

(
a

b

)

=
a!

(a−b)!b!

=
aa

(a−b)a−bbb

ebea−b

ea

√
2π√

2π
√

2π

√
a

(a−b)b

=
aa−bab

(a−b)a−bbb

1√
2π

√
a

(a−b)b

=

(
a

a−b

)a−b+1/2(a

b

)b 1√
2πb

=
1√
2πb

(

1+
b

a−b

)a−b+1/2(a

b

)b

⊓⊔

Corollary 76. In the limit as a→ ∞,

11.4 Degree Reduction Techniques 197

(
a

b

)

=
1√
2πb

(

1+
b

a−b

)a−b+1/2(a

b

)b

=
1√
2πb

(a

b

)b eb

√

1−b/a
=

eb

√
2πb

(a

b

)b

Proof. The result follows from

(

1+
b

a−b

)a−b

= eb

in the limit as a− b goes to infinity but b remains constant. However, this limit is

not a good approximation except for extraordinarily large a, and so we recommend

using the lemma instead of the corollary except when working asymptotically. ⊓⊔

Corollary 77. For a fixed b,

(
n

b

)

∼ eb

bb
√

2πb
nb = Θ(nb)

Proof. Follows directly from previous corollary. ⊓⊔

11.4.6 Complexity Calculation

With this accomplished, note that if the maximum degree of the entire system of

f ’s is ∆ , then

(
n

∆

)

+

(
n

∆ −1

)

+

(
n

∆ −2

)

+ · · ·+
(

n

3

)

= Z

is the maximum value of z.

The proper estimation of that sum, keeping both n and ∆ free, requires the use

of hypergeometric series. Thus it is hard to estimate. However, we can consider the

question of what values of i will make
(

n
i

)
as large as possible.

If one writes Pascal’s Triangle, one sees that this occurs for even n at
(

n
n/2

)
. For

odd n, there is a tie at
(

n
(n−1)/2

)
and

(
n

(n+1)/2

)
. Thus we can generalize for all n, that

the optimal is at
(

n
⌊(n+1)/2⌋

)
.

And the series surely contains ∆ −2 values. Since we have identified the largest

member, we can obviously (and this is a grotesque over-estimate) state that the sum

is less than (∆ −2) times the largest element.

Normally, if ∆ ≪ n, which would almost certainly be the case in any rational

example, we can estimate

D = ∆Z = ∆(∆ −2)

(
n

∆

)

198 11 Strategies for Polynomial Systems

and be rather confident. However, if ∆ > (n + 1)/2 then it is not
(

n
∆

)
which is the

largest member of the series.

And we split into two cases. Either ∆ is fixed, or it is not. If it is fixed, then

as n goes to infinity, then surely ∆ ≤ (n + 1)/2. With this in mind, D = ∆Z =
∆(∆ −2)

(
n
∆

)
∈Θ(n∆) and the algorithm is polynomial time. If ∆ is not fixed, then

we have to consider the possibility that ∆ = n/2. This, in turn, will be Θ(en/2nn/2)
which is most decidedly not polynomial time.

Thus the “simple degree dropper” algorithm is polynomial time, for any fixed ∆ ,

and not polynomial time if ∆ is not fixed. This is usually stated as “the algorithm is

pseudo-polynomial time in ∆ .”

11.4.7 Efficiency Note

Suppose w = x2x3x5x7 and another monomial v = x1x3x5 appears somewhere in

the system. If w is processed first, we will have new equations such that r1 = x2x3,

r2 = r1x5, and r3 = r2x7. None of these can be substituted into v.

Instead, suppose we were to reinterpret w as w = x3x5x2x7 which is obviously

the same thing since fields are commutative in both operations. Then r1 = x3x5,

r2 = r1x2, and r3 = r2x7. But now v = x1r1. So we could remove two monomials of

degree greater than 2 in one change, saving a step and several equations. Since this

also reduces the number of dummy variables introduced as well, its very useful to

take advantage of such opportunities if they arise.

Therefore, the algorithm we showed above, which we name the “simple degree-

dropper algorithm” should not be considered optimal. However, we present a vari-

ant, using the Greedy Algorithm, which should work quite fine. For differentiation,

we called it the “greedy degree-dropper algorithm.”

11.4.8 The Greedy Degree-Dropper Algorithm

Make an array of counters for every possible pair of variables xix j, with i ≤ j.

For every equation, and for every monomial of degree 2 or higher xa1
xa2
· · ·xad

,

increment the counter for xai
xa j

for all i < j. Thus (d−1)+(d−2)+ · · ·+2+1 =
d(d− 1)/2 increments are made. Also, an array of flags, initially all set to false,

should exist for all possible pairs xix j, with i≤ j. The flag will be set to true if this

pair ever appears in any monomial of degree 3 or higher.

Take the most common pair xix j, such that the flag is true. Then introduce a new

variable y = xix j, and substitute it where ever xix j is found, either by itself, or inside

any monomial.

The purpose of the flag is that xix j might be very common but only appear by

itself and never in a cubic or higher degree monomial—in which case, we would not

want to eliminate it at the cost of a new variable.

11.5 NP-Completeness of MP 199

Note that if there is a quintic monomial, it will only drop to quartic in this step if

it drops at all. Another step will take it to cubic, and a third to quadratic. But, this is

at worse d−2 times as much effort as before, as the example of a quintic monomial

shows. Therefore, the “greedy degree-dropper” algorithm is also polynomial time,

as it will take ∆ times as many passes as the simple one, at worst. Nonetheless, it is

obvious this will almost always do better than the simple algorithm.

11.4.9 Counter-Example for Linear Systems

So since we can reduce any polynomial system of equations to a larger one that

is degree two, the natural question is if we can drop to degree 1.

If P 6= NP the answer is clearly no, because solving a polynomial system of equa-

tions over a finite field is NP-Hard. Solving a linear system is possible in polynomial

time—in fact, cubic time or better.

Of course, if there were exponentially many equations, or even super-

polynomially many equations, then this argument fails.

11.5 NP-Completeness of MP

This section has been written is a slightly more rigorous tone than the rest of

the book, and the author apologizes, but one must sometimes be very careful when

making complexity claims.

The problem of solving a polynomial system of equations, over a finite field or

over the rationals, is NP-Hard. For shorthand, when the degree is exactly two, we

write this problem as MQ, and when the degree is at least two, as MP. Finally, if the

degree is exactly 3, we write MC. We signify the associated decision problems, i.e.

does this system have a solution or not, as MQD, MPD, and MCD, respectively.

For the decision problems, their membership in NP is obvious because given any

particular solution, then one could simply plug the solution into all the variables,

and see if it is indeed a solution, or not. This would be a very fast operation, and

certainly polynomial time.

We will now prove some theorems and corollaries about MP, MC, and MQ, and

their associated decision problems. But first, it is important to grasp that unless

P = NP, which would be a surprise, this means that these problems will never have

a polynomial time algorithm for solving them. Thus, as researchers, we must fo-

cus on special cases, randomized algorithms, moderately fast non-polynomial time

algorithms, heuristics, and approximations.

Theorem 78. The problem of MC, i.e. detecting whether a system of cubic polyno-

mial equations over GF(2), has a solution in the base-field, is NP-Complete.

200 11 Strategies for Polynomial Systems

Proof. The proof will proceed by assuming that we have a black-box that can detect

if a cubic system of polynomial equations, over GF(2), has a solution. The black-

box runs in polynomial time. We will write a converter to use this black-box to solve

the 3-CNF SAT problem, which is known to be NP-Complete. The converter runs

in polynomial time, and so MC is NP-Complete.

The SAT problem is as follows. One is given a logical expression in the five

operators of predicate calculus (∧,∨,∼,⇒,⇐⇒) but not the existential or universal

quantifiers (∃,∀). Then, one is asked if the logical expression has a setting for each

of its variables, such that the entire expression evaluates to “true.”

The 3-CNF SAT problem has the logical sentence written as a large conjunction

(logical-AND). Each element of the conjunction is called a clause and consists of a

disjunction (logical-OR) of three variables. The three variables can each be negated

or not. Obviously, all clauses must evaluate to true for the conjunction (logical-

AND) to be true. The reader may be interested to know that every SAT problem can

be rewritten as a 3-CNF SAT problem [63, Ch. 34.4].

Given a 3-CNF problem, write the clauses in the form (v1∨v2∨v3) with vi being

either some variable x j or its negation ∼ x j. Then we can write a cubic system of

equations as follows.

We will write one equation for each clause by noting the following tautology:

(a∨b∨ c) ⇔ ((a∨b)∧ c)⊕ (a∨b)⊕ c

⇐⇒ ((a∧ c)∨ (b∧ c))⊕ (a∨b)⊕ c

⇐⇒ ((a∧ c∧b∧ c)⊕ (a∧ c)⊕ (b∧ c))⊕ ((a∧b)⊕a⊕b)⊕ c

⇐⇒ (a∧b∧ c)⊕ (a∧ c)⊕ (b∧ c)⊕ (a∧b)⊕a⊕b⊕ c

⇐⇒ (abc+ac+bc+ab+a+b+ c) = 1

⇐⇒ abc+ac+bc+ab+a+b+ c+1 = 0

Furthermore, if a were negated, substituting 1 + a for a would not change the

degree of that polynomial, likewise for b and c. Thus each clause becomes one cubic

polynomial equation. The number of variables is unchanged. And this is clearly a

linear-time conversion, compared to the number of clauses. The increase in length

is also linear, obviously (since it is written in linear-time).

The black-box now is given the cubic system of equations. If the system has a

solution, then each polynomial is satisfied, and thus each clause is satisfied. There-

fore, the original logical sentence is satisfied. Likewise, if there were a solution to

the logical problem, then that would be a solution to the polynomial system. Thus

the black-box always gives the right answer. ⊓⊔

Corollary 79. The problem of MP, i.e. detecting whether a system of polynomial

equations, over GF(2), has a solution in the base-field, is NP-Complete.

Proof. The problem of MP contains the problem of MC. Any MP solving oracle

solves MC. The problem of MC is NP-Complete. Thus any polynomial-time ma-

11.5 NP-Completeness of MP 201

chine that could solve MP would solve an NP-Complete problem in polynomial

time. Therefore, MP is NP-Complete. ⊓⊔

The next one is non-trivial. It uses the result from Theorem 74 on Page 196,

that every polynomial system of equations, for any fixed degree, can be rewritten as

having degree two, with only polynomial time and polynomial growth. If the degree

of the initial system is not fixed, then the conversion is not polynomial time.

Corollary 80. The problem of MQ, i.e. detecting whether a system of quadratic

equations over GF(2), has a solution in the base-field, is NP-Complete.

Proof. Imagine one has a black-box that can solve MQ in polynomial time.

Suppose one has a problem of type MC. Use the technique Theorem 74 on

Page 196 to rewrite it as an only polynomially-larger problem of type MQ. Since

the original is of fixed degree (fixed at 3), this is a polynomial-time step. Then use

the black-box to detect if the system of equations has a solution. This process will

take, in its entirity, polynomial time. Thus, since MC is NP-Complete, likewise so

is MQ. ⊓⊔

Corollary 81. The problem of finding a base-field solution to a polynomial system

of equations over GF(2), i.e. MP, is NP-Hard.

Proof. A black box that could do this could solve MP by a simple algorithm. Given

a problem, ask the black box what a solution is. If it responds with the null-set, then

there is no solution. If it responds with a solution, then a solution exists. Since a

polynomial time algorithm for MP would solve an NP-Complete problem (MPD) in

polynomial time then MP is NP-Complete. ⊓⊔

Corollary 82. The problem of finding a base-field solution to a cubic system of

equations over GF(2), i.e. MC, is NP-Hard.

Proof. Same proof as Corollary 81 on Page 201. ⊓⊔

Corollary 83. The problem of finding a base-field solution to a quadratic system of

equations over GF(2), i.e. MQ, is NP-Hard.

Proof. Same proof as the Corollary 81 on Page 201. ⊓⊔

blarg

Lemma 84. If there is an algorithm to solve a polynomial system of equations over

the field GF(q), in polynomial time, then there algorithms to solve a polynomial sys-

tems of equations for every other finite field as well, and they all run in polynomial

time.

Proof. A system of equations over a finite field F with n variables and m equations

can be thought of as a map from Fn to {1,0}. If a particular assignment x ∈ Fn of

values to the n variables from will satisfy the system, then map that x to 1. If it will

not satisfy, then map it to 0.

202 11 Strategies for Polynomial Systems

This is a map from a finite set to a finite set. Then by using Theorem 72 on

Page 190, we can write it as a polynomial system over GF(p), for any p. We must

be careful, however. The size of the new system must be upper-bounded by some

polynomial f (s), where s was the size of the old polynomial system. A careful

reading of the proofs leading to that theorem will reveal that this is clearly the case.

Therefore, we merely choose p = q and solve our system over F by converting

to one over GF(p). ⊓⊔

Theorem 85. The problem of finding a base-field solution to a polynomial system of

equations over any particular finite field, is NP-hard.

Proof. This follows directly from Lemma 84 on Page 201 and Corollary 81 on

Page 201. ⊓⊔

Theorem 86. The problem of detecting if a base-field solution exists for a polyno-

mial system of equations, over any particular finite field, is NP-Complete.

Proof. This follows directly from Lemma 84 on Page 201 and Corollary 79 on

Page 200. ⊓⊔

One Last Interesting Thought

Suppose that detecting if a quadratic system of equations over GF(2) has a solu-

tion or no solutions, could be done in time f (n), where n is the number of variables.

Then, if the system has a solution, one solution can be found in at most (n+1) f (n)
time. At start, we run the f (n) time algorithm, and verify that a solution exists. Now,

we proceed as follows.

First, assume that the first variable is one, and substitute accordingly. Then check

for the existence of a solution. If the system has become unsolvable, then you know

that the first variable must be 0 in any valid solution. If the system remains solvable,

then you know that there is some solution with the first variable equal to a 1. In either

case, substitute accordingly, and repeat this process, now with one fewer variable.

Since there are n variables, then clearly a total of n+1 calls would be needed.

In practice, SAT-solvers as described in Chapter 14, could be this f (n) time

black-box, but instead they find a satisfying solution whenever a solution exists.

So there is no use for this method at this time.

But it is possible to imagine a black-box that would simply report “solvable”

or “unsolvable” for any quadratic system of equations over GF(2)(2), at least as

a thought-experiment. It is important to realize that with only slightly more effort,

such a black-box would solve the system of equations also.

For other finite fields, of size q, then (q−1)n f (n) calls would be required to the

f (n) time algorithm, for reasons that are perhaps obvious.

11.6 Measures of Difficulty in MQ 203

11.6 Measures of Difficulty in MQ

Strictly speaking, the complexity of a problem is normally expressed as a func-

tion of the length of its inputs when encoded into binary. For example, this is the

strict standard used in determining if an algorithm is polynomial time or not. How-

ever, this is not how most complexity expressions are written. For example, an n×n

matrix has n2 elements and its inversion via adjoining an identity matrix and per-

forming Gaussian Elimination is O(n3). We do not say that an “n element square

matrix” takes O(n3/2) time to invert and O(n) time to negate, for example, but these

would be correct statements, in that world view. The metric of how many rows and

columns a matrix has is much more useful to us, and so it is used as the measure for

dense linear algebra

With that in mind, we can consider what metrics are appropriate for polynomial

systems. The number of equations and the number of variables is key, as we will

see in the description of Linearization in Section 12.3 on Page 211. Throughout this

book we have been using m for the number of equations and n for the number of

unknowns, as a parallel to the usage for a linear system induced by an m×n matrix,

and an m dimensional vector of constants.

In the next section, we will discuss the role of m/n, often denoted c or γ .

11.6.1 The Role of Over-Definition

Normally, a system of equations is said to have m equations and n unknowns.

However, sometimes it is useful to think of this as nc equations and n unknowns,

where obviously, c = m/n. This is sometimes denoted γ , to contrast with β , the

sparsity of the system.

Over-defined equations can have several consequences. First, if c ≈ n, which

means that m≈ n2, then Linearization will likely solve the system. See Section 12.3

on Page 211. Also, if c≈ 1/n, or m≈ 1, other techniques might solve the equation

[164, Ch. 4.3]. In general, a high c makes SAT-Solver based attack easier as well.

See Chapter 13.

However, this is not the complete picture. To see this, we will do an extreme

example.

11.6.2 Ultra-Sparse Quadratic Systems

Suppose a quadratic system of m equations, on n variables, has only α logn

unique degree 2 monomials with non-zero coefficients. Here α is a constant (or

possibly upper-bounded by a constant in n). Let us call such a system hypersparse.

Those α logn unique monomials, if viewed as totally unrelated to each other, such

as after a linearization, have 2α logn = nα possible values. This is highly pessimistic

204 11 Strategies for Polynomial Systems

of course, as there might be much smarter ways to iterate through all possibilities,

but this is only an example. Also, observe for random n, each is 0 with probabil-

ity 3/4. So surely if one wishes to iterate, one should do it with the lowest-weight

guesses first (i.e., guesses where most monomials are zero).

For any particular guess as to the values of the quadratic monomials, only linear

monomials will remain, and a linear system in m equations and n unknowns can be

solved in time Θ(mnmin(m,n)) using only Gaussian Elimination.

The total running time is therefore at worst Θ(mnα+1 min(m,n)). Since α is a

constant, or upper-bounded by a constant, then this is polynomial time! Using the c

notation from before, this is Θ(cnα+2 min(c,1)).
To see that such a system is not unreasonable, note that α logn is not the number

of times a quadratic monomial appears in the system, but the number of unique

monomials appearing. A monomial cannot be repeated in one equation but it can

be repeated between equations. If all the monomials appeared in each equation, the

sum of two equations would be linear (in the GF(2) case), so this is not a hard

problem. But it would be difficult to solve if 3/4 of them randomly appeared in

each equation.

The key to this paradox is to realize that the system is very sparse. If there are

n variables, then there are (n2 + n)/2 columns for quadratic and linear terms after

linearization, plus one for constants. The sparsity β , which is the fraction of entries

which are non-zero, is

β =
4n+3α logn

2n2 +2n+1
≈ 1

2n

if we assume any particular 3/4ths of the unique monomials will appear in any given

equation.

This technique was thought up by the author but it appears that it was indepen-

dently thought up by Alexander Maximov and Alex Biryukov [175], in their paper

“Two Trivial Attacks on Trivium.” There are very few quadratic terms in that system

of equations, and so this makes sense. See that paper for details.

An Interesting Observation

Amusingly if α = (logn)− 2, and c = 1 then the running time becomes nlogn.

This function is assymptotically greater than all polynomials, regardless of degree.

It is assymptotically less than all exponential functions, c1(c2)
p(n), where p(n) is a

polynomial (and c2 > 1).

To see that

nc0 < nlogn < c1(c2)
p(n)

for all positive c1,c2,c3, simply take the log of both sides and obtain

c0 logn < (logn)2 < (logc1)+ p(n) logc2

which is obviously true. There are many functions which are strictly assymptotically

between polynomial and exponential. But many computer scientists speak of the

11.6 Measures of Difficulty in MQ 205

polynomial-exponential divide as if there were nothing between the two classes, or

as if no serious algorithm for a real-world problem has that running time.

11.6.3 Other Views of Sparsity

Connection To Linear Sparsity

Sparsity is important for other reasons. First, sparse linear systems are much

easier to solve than dense systems of the same size. Since linear algebra is used at

many stages of solving polynomial systems, including Linearization, XL, and also

various steps when finding Gröbner Bases, we anticipate that sparse systems are

easier to solve as a result. In part, this was shown, in part, in Section 11.6.2 on

Page 203.

Memory Usage

Quite often, the limiting factor in solving a polynomial system of equations

with a Gröbner Bases algorithm is not running time, which can be countered with

human patience, but rather memory, especially with MAGMA. The algorithms of

J. C. Faugère, called F4 and F5 [109, 110], use much memory, and this resulted

in MAGMA frequently crashing in the experiments performed in Chapter 13, and

Chapter 15.

SAT Solvers

For reasons not completely well understood, the sparsity of a system of equations

was absolutely crucial in the ability of SAT-solvers to find a solution. This too will

be detailed in Chapter 13.

11.6.4 Structure

This is perhaps the most under-appreciated factor. We show in Appendix C on

Page 315, that a p-coloring can be found by solving a polynomial system of equa-

tions. This is no surprise, because MP is NP-Complete and all NP-Complete prob-

lems are reducible to each other, including graph coloring.

Graph coloring, as well as other graph theoretic problems, such as Maximum

Clique, Maximum Independent Set, and Minimum Vertex Cover, are NP-Complete,

but in the special case of bipartite they become polynomial time problems [63, Ch.

206 11 Strategies for Polynomial Systems

34.5]. Likewise the Maximum Cut problem is NP-Complete, but becomes polyno-

mial time for planar graphs.

For example, any bipartite graph can be n-colored for all n > 1, unless it has no

edges, in which case for n≥ 1. The maximum size of any clique in a bipartite graph

is 2, unless it has no edges, in which case it is 1. Obviously these are trivial cases.

The Minimum Vertex Cover case is not trivial, as it relates to König’s Theorem,

which states that in any bipartite graph, the number of edges in a maximum matching

equals the number of vertices in a minimum vertex cover [168]. The matching can

be found in polynomial time.

11.7 The Role of Guessing a Few Variables

While this idea is very simple, many researchers do not grasp all of its con-

sequences. Sometimes one will “guess” a few variables of a system of equations.

This occurs in at least three settings, and the general term for it is a “guess-and-

determine” attack.

First, one might have a system of equations that one cannot break. Suppose there

are 100 variables, and 100 equations. If you guess 10 variables, then 210 guesses in

worse case are required. It might be that solving the 90 variable system with 100

equations is 1024 times faster than solving the original. Perhaps not. But the “over-

definition,” earlier denoted by either γ or c, is changing from c = 1 to c = 1.11 · · ·.
In the special case of the XL algorithm (see Section 12.4 on Page 213), this is called

Fix-XL (see Section 11.7.2 on Page 207 and Section 12.4.4 on Page 217).

Second, in testing algebraic cryptanalysis, one might simulate the above. Usu-

ally this is done as follows. First, one generates a random key. Second, one encrypts

some plaintexts in that key. Third, one passes the ciphertext-plaintext pairs to an

attack algorithm. One can also leak, perhaps, g of the bits of the key as “extra equa-

tions” of the form ki = 1,k j = 0, et cetera. . . . Since the progammer knows the key,

then he can always guess correctly. However, this also requires the progammer to

verify that a false guess results in a rejection of the guess in time shorter than solv-

ing the system in the event of a good guess. In this case, if the average running time

of a solution with a good guess is t, then an attacker who must truly guess would

have worse case running time of 2gt, or in average, half that. An example of this is

given in Section 2.8 on Page 15.

11.7.1 Measuring Infeasible Running Times

The final use is when a system of equations cannot be solved. For example, it is

unlikely that one will find a system of equations to break the Advanced Encryption

Standard in a reasonable amount of time. However, since the key can be 128 bits

long, suppose one runs the attack and one leaks 112, 111, 110, . . . , 96 bits to the

11.7 The Role of Guessing a Few Variables 207

attack algorithm. Then one gets t112, t111,t110,. . . ,t96, the average running times, in

each case. Surely,

min
i∈[96,112]

2iti

2

is a good lower bound for the average case running time of an attack on the system.

It might be that t64 is actually much better, but that it takes far too long to run, and

so we, as humans with a finite lifespan, will probably never know that.

The attack is better than brute force if

2iti

2
<

2128tver

2

where tver is the time for a brute-force attacker to simply verify a potential guess of

the key. And this condition is met if ti < tver2
128−i. Therefore we have demonstrated

Theorem 87. One can verify that an attack against a cryptosystem is faster than

brute-force, even if one cannot determine how long the attack takes.

For example, suppose tver = 10−8 = 2−26.575 CPU seconds on some special ma-

chine, optimistic but not unreasonable at the time of the writing of this book (Fall

of 2008). Suppose further that when 70 bits of the key are leaked to some sort of

algebraic attack algorithm, the attack takes 300 CPU years, or 233.139 CPU seconds.

Since

233.139 < 2−26.575270 = 243.425

the attack is faster than brute-force. In fact, it is faster by a factor of

243.425/233.139 = 210.286 ≈ 1249

Assuming the algebraic attack is amenable to parallelization (which is a huge

and possibly very unfair assumption), with a network of 1000 PC’s, this algebraic

attack could be verified in 109.5 days. This would be a large undertaking, but surely

possible. However, the true running time of a real attacker would require 58 bits to

be guessed in worse case, or 257 runs of the algorithm on average. This would be

257× 300 CPU years, or 43.23 quintillion CPU years. Even with a trillion CPUs,

this would take longer than the age of the universe.

11.7.2 Fix-XL

Nicolas Courtois has shown that guessing bits before solving a system of poly-

nomial equations in many cases is a surprisingly effective way of accelerating the

solution of polynomial systems of equations, either by XL or by Gröbner Bases. For

example, see [79, 66]. This has sometimes been called Fix-XL, when used with the

XL algorithm. This topic, a generalization of the “guess-and-determine” method,

will be covered more in Section 12.4.4.

Chapter 12

Algorithms for Solving Polynomial Systems

Because of the previously mentioned NP-Complete status of MQ, the topic of

how to actually solve these systems has the disadvantage that truly efficient (i.e.

polynomial time) algorithms have not yet been found. In fact, they will never be

found if P 6= NP. Nonetheless, there are algorithms available for experimentation,

many of which we describe below.

12.1 A Philosophical Point on Complexity Theory

It is important to note that statements about assymptotic complexity are merely

that: assymptotic. The absence of a polynomial time algorithm for a problem means

less if the size of the problem can be bounded above. For example, all known ver-

sions of the “simplex” method [90] of solving linear systems of inequalities have

worst-case exponential running time [130]. But for any typical medium-sized prob-

lem, usually the program simply terminates in a reasonable time (on modern ma-

chines, often too short to accurately measure) and outputs a result.

This occurs for three reasons. First, the number of variables in a typical problem

is often not large, on the order of a few hundred. Second, the worst-case complexity

and average-case complexity are quite distinct in the simplex method [130]. Third,

over several decades, the code has become highly optimized.

The topic of solving polynomials over GF(2) has not had the benefit of the same

length of time and number of researchers as linear programming over R. But, several

lessons remain. While our problems are, in fact, quite large sometimes reason alone

can trim the problem to a smaller analog of itself, such as in Keeloq in the earlier

chapters. Average-case analysis, rather than worse-case analysis, is very important.

Finally, we should never lose focus of the fact that assymptotic results only matter

in the limit, as the number of variables goes to infinity.

© Springer Science + Business Media, LLC 2009

G.V. Bard, Algebraic Cryptanalysis, DOI: 10.1007/978-0-387-88757-9_12 209

210 12 Algorithms for Solving Polynomial Systems

12.2 Gröbner Bases Algorithms

The Buchberger Algorithm, for calculating a Gröbner Basis, is an exact algorithm

that can solve many problems in the area of polynomial systems. Sometimes it is

used for triangulating a system of polynomial equations. This works identically to

triangulating a linear system, in that the final equation is in terms of one variable,

and each equation above it has one more variable than the equation immediately

below it (naturally, some coefficients will be zero, and so some variables may be

absent from some equations).

Many other uses of Gröbner Bases algorithms exist. An excellent reference on

the topic is [86]. Since this topic has been so extensively covered by others, we will

not go into detail here. We strongly encourage the reader to read at least the first half

of [86].

12.2.1 Double-Exponential Running Time

Many cryptographers misunderstand the worse-case estimate, of double-

exponential running time, for Gröbner Bases algorithms. There exists ideals [123],

that have a basis made of polynomials of degree at most d, but whose Gröbner Basis

has polynomials of degree

O(d(
√

3)n

)

Those polynomials will have many monomials! Thus the algorithm which com-

putes the Gröbner Basis of that ideal will run in double-exponential running time,

or roughly O(d2O(n)
), compared to the degree d of the input basis. This is Theorem

B in [123].

However it is proven in [123], that with the exception of a set of measure zero,

the ideal generated by m polynomials with random coefficients, in n variables of

degree at most d, has a Gröbner Basis composed of polynomials of degree at most

(n+1)d−n. This implies a running time of O(2dn) at absolute worst, which is much

better than double-exponential. Note, the author learned of this from [37], but the

original paper goes even further to say that this set of measure zero is actually the

complement of a non-empty open set in the Zariski topology—very small indeed.

This is Theorem C in [123].

12.2.2 Remarks about Gröbner Bases

In practice, the author recommends that the polynomial system under consid-

eration be written in the language of MAGMA [2] and SINGULAR [9], submitted

to each, and then one should wait for the program to either crash due to a lack of

memory, or output a result. In other words, the implementations of these algorithms

12.3 Linearization 211

have been done with such care (including hand-optimizations of the compiled code

in some cases) that it is unlikely that a “home-grown” implementation will out-

perform them. They can safely be viewed as black-boxes.

On the other hand, knowing precisely how an algorithm operates is very use-

ful for determining how to prepare inputs to that algorithm. Many details of the

implementation of the algorithm can dictate strategies for pre-conditioning. It is

very unfortunate that much of the computer algebra software in the community is

closed-source, which renders such pre-conditioning and research impossible. Luck-

ily, the SAGE project [7], an open source competitor to MAGMA [2], MATLAB [5],

MAPLE [3], and MATHEMATICA [4], is open-source and appears to equal or exceed

MAGMA’s performance in many cases. It should be noted that SINGULAR is also

free software, like SAGE, and SAGE includes SINGULAR on shipment.

An important paper, entitled “Why You Cannot Even Hope to Use Gröbner

Bases in Public-Key Cryptography—An Open Letter to a Scientist Who Failed

and a Challenge to Those Who have Not Yet Failed” [37], published under several

pseudonyms, caused many cryptographers to abandon Gröbner Bases approaches.

But in reality, anyone who has actually read [37] knows that this paper deals with

constructing a cryptosystem based on the hardness of Gröbner Bases problems, not

breaking a cryptosystem already constructed, which is our focus in this book. There-

fore, the utility of Gröbner Bases approaches in cryptanalysis is not to be dismissed

because of the arguments of that article.

12.3 Linearization

Suppose one has a quadratic system of m equations in n variables. There are
(

n
2

)
possible quadratic monomials, and n possible linear monomials, for a total of

(n2 + n)/2. Suppose further that one renames all the monomials with new names,

so that each monomial is a unique new variable. This is best illustrated by example:

x1 + x2x3 = 1

x1x2 + x1x3 + x1 = 0

x2x3 + x2 = 0

x1x2 + x1 + x3 + x2 = 0

x1 + x1x2 + x3 = 0

x2x3 + x1 + x2 = 1

Now apply the renaming: x1 = y1, x2 = y2, x3 = y3, x1x2 = y4, x1x3 = y5, x2x3 =
y6. One obtains the following:

y1 + y6 = 1

212 12 Algorithms for Solving Polynomial Systems

y4 + y5 + y1 = 0

y6 + y2 = 0

y4 + y1 + y3 + y2 = 0

y1 + y4 + y3 = 0

y6 + y1 + y2 = 1

Now suppose there were a solution (x1,x2,x3) to the original polynomial system.

It would be trivial to compute the remaining values of y for this solution, as the

values of the linear monomials (x1,x2,x3) contain all the information needed. It is

also easy to see that the resulting, longer, vector of y’s would solve the linear system.

Performing Gaussian Elimination on this system results in

y1 = 1

y2 = 0

y3 = y5

y4 = y5 +1

y5 = free

y6 = 0

This yields two possible solutions, namely (1,0,0,1,0,0) and (1,0,1,0,1,0).
The second one, by inspection, solves the original polynomial system. The first one,

however, is absurd. The first three terms dictate that x1 = 1,x2 = 0,x3 = 0. But the

next term says that x1x2 = 1. With x2 = 0, that is not possible. The reason that this

can occur is that the linearization process destroys information. In this case, the fact

that y4 cannot be one unless both y1 and y2 are one, is no longer represented in the

linear system.

Therefore, it is clear that if a solution to the original polynomial system of equa-

tions exists, then that solution will be a solution to its linearization (after calculating

the correct values for the “new” variables). However, the converse is false. Many so-

lutions to the linear system of equations may be non-solutions to the original poly-

nomial system. These are called spurious solutions to the linear system, to signify

that they are not solutions to the non-linear system.

With this in mind, one might ask what is the benefit of linearization? Suppose

one knows that a solution exists (this is often the case with cryptanalysis, since a

message was indeed sent). We know that linear systems in general, over Q, R, C,

have either no solutions, one solution, or infinitely many solutions. Linear systems

over GF(2), on the other hand, have either 2n′−r solutions or 0 solutions (see Theo-

rem 27 on Page 87), where n′ is the number of variables after linearization, and r is

the rank of the set of equations.

Since the polynomial system of equations has a solution by assumption, and since

linearization destroys no solutions, we know there is at least one linear system so-

lution, so the linear system then definitely has exactly 2n′−r solutions. If the rank of

the set of equations is high enough, i.e. r ≈ n′, then there will be only one solution,

12.4 The XL Algorithm 213

or perhaps a very small number of them. One can then check to see which are solu-

tions of the original system. Note, that r > n′ is impossible since the column rank is

always less than the number of columns, by definition.

Thus if one is given roughly m = (n2 + n)/2 equations, then one can perform

this linearization process and get a few “candidate” solutions. Essentially, having

m≈ n′ ≈ n2/2 results in there being “too much” information in the linear system to

permit spurious solutions to be numerous.

12.4 The XL Algorithm

The XL algorithm was first mentioned in [82, 64], and is due to Nicolas T. Cour-

tois. Suppose one gives you the polynomial system below, and asks you to find all

possible solutions:

1+ x+ y+ z+wz+ yz = 0

x+ z+wx+wy+wz+ xy+ xz+ yz = 1

w+ y+wx+ xz+ yz = 0

x+wx+wy+wz+ yz = 1

At first it would seem that linearization would be of no help in this case. There

are four variables, so there are 10 monomials, of which 6 are quadratic and 4 are

linear. However, we only have 4 equations, far less than 10.

Suppose now that we made the system cubic. At first this seems like a disaster.

Cubic polynomials have

(
n

3

)

+

(
n

2

)

+

(
n

1

)

=
n3

6
+

5

6
n

possible monomials. In our case, however, there are only
(

4
3

)
= 4 additional cubic

monomials, and so 14 and not merely 10 equations would be required. The XL

algorithm will make the additional needed equations (in this case, we will end with

20, and not 4, equations).

The XL algorithm is actually quite simple and is summarized in Algorithm 22.

One elects to increase the degree of the system from degree d to some larger degree

D, but usually D = d +1 or sometimes D = d +2. Then one multiplies every equa-

tion by every possible monomial of degree D− d or lower. In this case, d = 2 and

it turns out that D = 3 will be sufficient. So we must multiply every equation by all

the degree 1 and 0 monomials. In this case, the set of monomials is {w,x,y,z,1} .

Thus where we had 4 equations, we now have 20. Then, you linearize and solve.

The XL algorithm would, in our example, yield the following. The breaks every

5 equations show the grouping where each of the 4 sets of 5 equations comes from

one of the four original equations.

214 12 Algorithms for Solving Polynomial Systems

INPUT: A system of m polynomial equations in n unknowns, of degree d.

OUTPUT: A solution or solutions to the system of equations, if the equations have sufficient

rank.

1: A human selects a degree D > d. Usually D = d +1.

2: Make a list L of all monomials of degree D− d or less, including the monomial 1, which has

degree 0.

3: Multiply all equations by every member of L. (Since there were m equations before this step,

there are m|L| equations after it).

4: Linearize the system. See Section 12.3 on Page 211.

5: Solve via linear algebra.

Algorithm 22: The XL Algorithm [Nicolas Courtois]

1+ x+ y+ z+wz+ yz = 0

w+wx+wy+��wz+��wz+wyz = 0

�x+�x+ xy+ xz+wxz+ xyz = 0

�y+ xy+�y+��yz+wyz+��yz = 0

�z+ xz+��yz+ �z+wz+��yz = 0

x+ z+wx+wy+wz+ xy+ xz+ yz = 1

��wx+��wz+��wx+wy+��wz+wxy+wxz+wyz = w

�x+��xz+wx+wxy+wxz+ xy+��xz+ xyz = �x

��xy+��yz+wxy+wy+wyz+��xy+ xyz+��yz = y

��xz+ �z+wxz+wyz+wz+ xyz+��xz+ yz = �z

w+ y+wx+ xz+ yz = 0

w+wy+wx+wxz+wyz = 0

��wx+ xy+��wx+ xz+ xyz = 0

wy+ y+wxy+ xyz+ yz = 0

wz+��yz+wxz+ xz+��yz = 0

x+wx+wy+wz+ yz = 1

��wx+��wx+wy+wz+wyz = w

�x+wx+wxy+wxz+ xyz = �x

xy+wxy+wy+wyz+ yz = y

xz+wxz+wyz+wz+ yz = z

Upon linearization we get a linear system equivalent to the matrix:

12.4 The XL Algorithm 215















































w x y z wx wy wz xy xz yz wxy wyz wxz xyz

0 1 1 1 0 0 1 0 0 1 0 0 0 0

1 0 0 0 1 1 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 1 0 0 0 1 1

0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 1 0 1 0 0 0 0 0

0 1 0 1 1 1 1 1 1 1 0 0 0 0

1 0 0 0 0 1 0 0 0 0 1 1 1 0

0 0 0 0 1 0 0 1 0 0 1 0 1 1

0 0 1 0 0 1 0 0 0 0 1 1 0 1

0 0 0 0 0 0 1 0 0 1 0 1 1 1

1 0 1 0 1 0 0 0 1 1 0 0 0 0

1 0 0 0 1 1 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1 1 0 0 0 0 1

0 0 1 0 0 1 0 0 0 1 1 0 0 1

0 0 0 0 0 0 1 0 1 0 0 0 1 0

0 1 0 0 1 1 1 0 0 1 0 0 0 0

1 0 0 0 0 1 1 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 1 0 1 1

0 0 1 0 0 1 0 1 0 1 1 1 0 0

0 0 0 1 0 0 1 0 1 1 0 1 1 0















































x =















































+C

1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0















































This matrix, over GF(2), is of full column-rank (i.e. the set of vectors formed by

its columns is linearly independent), and the linear system has exactly one solution,

corresponding to w = 0, x = 1, y = 0, z = 1, wx = 0, wy = 0, wz = 0, xy = 0, xz = 1,

yz = 0, wxy = 0, wyz = 0, wxz = 0 and xyz = 0. Since this is consistent (i.e. we do

not have something akin to x1x2 = 1 but x2 = 0 in the previous example), we know

this is a solution. Since all solutions of the polynomial system are solutions of the

linear system, we know we have found all solutions.

For a Gröbner Bases algorithm, or some other method that works with the poly-

nomials as true polynomials, this operation is foolish. Knowing that x f (x) = xy

when it is already known that f (x) = y is of no help in those cases. But, in the case

of linearization, the image of the equations as a linear system will have x f (x) = xy

linearly independent from f (x) = y, in all but exceptional cases, and so these equa-

tions do provide new information.

12.4.1 Complexity Analysis

Naturally, it would be easier to simply check all 24 possibilities for w,x,y, and z

but that takes 2n steps in general. The XL algorithm will be faster than that in gen-

216 12 Algorithms for Solving Polynomial Systems

eral. For d = 2 and D = 3, an m equation quadratic system in n unknowns will

yield n3/6 + 5n/6 monomials. There will be m(n + 1) equations, resulting in a

(mn + m)× (n3/6 + 5n/6) matrix. Even with naı̈ve Gaussian Elimination this re-

quires

(mn+n)(n3/6+5n/6)min(mn+n,n3/6+5n/6)

field operations.

Using c = m/n notation, this becomes

∼ (cn5/6)min(cn2,n3/6)∼ (c/6)n7 min(c,n/6)

or if c is chosen so that m ≈ n2/6, that is to say c = n/6, this is ∼ n9/216. The

approximation m≈ n2/6 requires some explanation.

12.4.2 Sufficiently Many Equations

An interesting thought is to measure the point at which the matrix is square. If

the matrix is full column rank, then we will get a unique solution provided that a

solution exists. If there are fewer rows than columns, then the matrix cannot be of

full column-rank. However, this condition of having the right number of rows is of

course insufficient for full column-rank problems, because (for example) several of

the rows might be identical. Nonetheless, this is a “ball-park estimate” for a unique

solution. Furthermore, we prove that random matrices generated by fair coins tend

to have very low nullity (dimension minus rank), in Theorem 59 on Page 144. Our

matrices in algebraic cryptanalysis are not random necessarily, but the property is

suggestive.

The matrix is square for D = d +1 when

(n+1)m = n3/6+5n/6 or m≈ n2/6

Previously, we required ≈ n2/2 equations to get a unique solution (from lin-

earization) and now only ≈ n2/6 are required.

12.4.3 Jumping Two Degrees

It is interesting to see what happens when using XL on an MQ problem, and hav-

ing D = 4. This means every equation will be multiplied by all possible monomials

of degree 2, degree 1, and the degree 0 monomial (i.e. the constant 1).

The number of monomials of degree 2, degree 1, and degree 0 is

(
n

2

)

+

(
n

1

)

+

(
n

0

)

= n(n+1)/2+1

12.4 The XL Algorithm 217

So the number of equations will be m(n2 +n+2)/2. The number of monomials

will be

(
n

4

)

+

(
n

3

)

+

(
n

2

)

+

(
n

1

)

+

(
n

0

)

=
n4−2n3 +11n2 +14n+24

24

Thus the system will be exaclty defined (a square matrix) when

m(n2 +n+2)/2 =
n4−2n3 +11n2 +14n+24

24

m =
2(n4−2n3 +11n2 +14n+24)

24(n2 +n+2)

m ∼ n2/12

And thus we need only 1/6 as many equations, n2/12 versus n2/2, using Lin-

earization alone. Thus running time in this case can be found.

The final matrix has m(n2 + n + 2)/2 rows and (n4 − 2n3 + 11n2 + 14n)/24

columns. The complexity of a Gaussian Elimination is ∼ mnmin(m,n). Substitut-

ing m = cn, one obtains a running time of ∼ cn10 min(n/12,c)/96. If the matrix

is approximately square, m ≈ n2/12 or c ≈ n/12, and the running time becomes

∼ n11/1152.

12.4.4 Fix-XL

Here, we simply apply techniques of a “guess-and-determine” attack (see Sec-

tion 11.7 on Page 206) to the general problem of solving a system of polynomial

equations. Suppose there are m equations and n unknowns and degree 2. If we guess

g variables, then only n−g variables remain. For D = 5, D = 4 and D = 3, we would

have

Operating Degree Monomials Equations Unknowns

D = 5
(

n−g
3

)
+
(

n−g
2

)
+
(

n−g
1

) [(
n−g

3

)
+
(

n−g
2

)
+
(

n−g
1

)]
m

(
n−g

5

)
+ · · ·+

(
n−g

1

)
+1

D = 4
(

n−g
2

)
+
(

n−g
1

) [(
n−g

2

)
+
(

n−g
1

)]
m

(
n−g

4

)
+
(

n−g
3

)
+
(

n−g
2

)
+
(

n−g
1

)
+1

D = 3
(

n−g
1

) [(
n−g

1

)]
m

(
n−g

3

)
+
(

n−g
2

)
+
(

n−g
1

)
+1

2
1

8
1
2

A
lg

o
rith

m
s

fo
r

S
o

lv
in

g
P

o
ly

n
o

m
ial

S
y

stem
s

Table 12.1 The typical parameters used in solving a 50-variable, 50-equation quadratic system of equations, with XL.

Variables New New New Total New Total Linear Possible Possible Possible Possible Possible

Guessed Remaining Cubics Quadratics Linear Monomials Equations Quintics Quartics Cubics Quadratics Monomials Iterations status

10 40 9,880 780 40 10,701 535,050 658,008 91,390 9,880 780 760,099 1,024 underdefined

15 35 6,545 595 35 7,176 358,800 324,632 52,360 6,545 595 384,168 32,768 underdefined

16 34 5,984 561 34 6,580 329,000 278,256 46,376 5,984 561 331,212 65,536 underdefined

17 33 5,456 528 33 6,018 300,900 237,336 40,920 5,456 528 284,274 131,072 overdefined

20 30 4,060 435 30 4,526 226,300 142,506 27,405 4,060 435 174,437 1,048,576 overdefined

Variables New New New Total New Total Linear Possible Possible Possible Possible Possible

Guessed Remaining Cubics Quadratics Linear Monomials Equations Quintics Quartics Cubics Quadratics Monomials Iterations status

20 30 0 435 30 466 23,300 0 27,405 4,060 435 31,931 1,048,576 underdefined

24 26 0 325 26 352 17,600 0 14,950 2,600 325 17,902 16,777,216 underdefined

25 25 0 300 25 326 16,300 0 12,650 2,300 300 15,276 33,554,432 overdefined

30 20 0 190 20 211 10,550 0 4,845 1,140 190 6,196 1,073,741,824 overdefined

Variables New New New Total New Total Linear Possible Possible Possible Possible Possible

Guessed Remaining Cubics Quadratics Linear Monomials Equations Quintics Quartics Cubics Quadratics Monomials Iterations status

20 30 0 0 30 31 1,550 0 0 4,060 435 4,526 1,048,576 underdefined

30 20 0 0 20 21 1,050 0 0 1,140 190 1,351 1,073,741,824 underdefined

32 18 0 0 18 19 950 0 0 816 153 988 4,294,967,296 underdefined

33 17 0 0 17 18 900 0 0 680 136 834 8,589,934,592 overdefined

35 15 0 0 15 16 800 0 0 455 105 576 34,359,738,368 overdefined

12.5 ElimLin 219

If the matrix at the end of the linearization process is not full rank, then a unique

solution will not be found. Therefore, we desire that there be more equations than

unknowns, but only slightly. Furthermore, the expected number of iterations is 2g,

and so we would like g to be as small as possible.

In the example shown in Table 12.1 on Page 218, we chose 50 variables and

50 equations, and operating degrees D = 3, D = 4 as well as D = 5. And so the

choices are to solve a linear system of size 900× 834 about 8.5 billion times, a

16,300× 15,276 matrix about 34 million times, or a 300,900× 284,274 matrix

about 131,072 times. And naturally, faced with matrices of this size, we cannot rule

out the possibility of brute-force checking all 250 choices.

Generally, since matrix operations are cubic time or better, we should choose the

option with the fewest iterations, provided that we can store the matrix in RAM.

12.5 ElimLin

The ElimLin algorithm is also a creation of Nicolas T. Courtois, and appeared in

[76]. Here, we will give more detail. In this section, we are concerned with quadratic

systems of polynomials over any field. Usually it will be GF(2), but it can even be

Q, R, or C.

Suppose one has such a system of equations, and then one performs linearization

as specified in Section 12.3 on Page 211. Then, suppose further that one executes

Gaussian Elimination to RREF upon that matrix, of size m×n after the linearization,

with the objective of putting the system into reduced row-echelon form. Let r denote

the rank of the set of row vectors of the matrix. The output one would obtain would

be the following:



















1 0 0 · · · 0 a1,r+1 a1,r+2 · · · a1,n−1 a1,n

0 1 0 · · · 0 a2,r+1 a2,r+2 · · · a2,n−1 a2,n

0 0 1 · · · 0 a3,r+1 a3,r+2 · · · a3,n−1 a3,n
...

...
...

. . .
...

...
...

. . .
...

...

0 0 0 · · · 1 ar,r+1 ar,r+2 · · · ar,n−1 ar,n

0 0 0 · · · 0 0 0 · · · 0 0

0 0 0 · · · 0 0 0 · · · 0 0
...

...
...

. . .
...

...
...

. . .
...

...

0 0 0 · · · 0 0 0 · · · 0 0



















We will place one more requirement on the matrix. The columns associated with

the quadratic monomials will come first, and then the columns associated with the

linear monomials (i.e. the original variables) will come after. Let the number of

original variables be v. Then either r > n− 1− v or r ≤ n− 1− v. We will assume

the former, and call it the “sufficient rank condition.”

When this “sufficient rank condition” occurs, we obtain the following matrix:

220 12 Algorithms for Solving Polynomial Systems

































1 0 0 · · · 0 0 0 · · · 0 0 0 a1,r+1 a1,r+2 · · · a1,n−1 b1

0 1 0 · · · 0 0 0 · · · 0 0 0 a2,r+1 a2,r+2 · · · a2,n−1 b2

0 0 1 · · · 0 0 0 · · · 0 0 0 a3,r+1 a3,r+2 · · · a3,n−1 b3

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 0 · · · 1 0 0 · · · 0 0 0 an−v−2,r+1 an−v−2,r+2 · · · an−v−2,n−1 bn−v−2

0 0 0 · · · 0 1 0 · · · 0 0 0 an−v−1,r+1 an−v−1,r+2 · · · an−v−1,n−1 bn−v−1

0 0 0 · · · 0 0 1 · · · 0 0 0 an−v,r+1 an−v,r+2 · · · an−v,n−1 bn−v

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 0 · · · 0 0 0 · · · 1 0 0 ar−2,r+1 ar−2,r+2 · · · ar−2,n−1 br−2

0 0 0 · · · 0 0 0 · · · 0 1 0 ar−1,r+1 ar−1,r+2 · · · ar−1,n−1 br−1

0 0 0 · · · 0 0 0 · · · 0 0 1 ar,r+1 ar,r+2 · · · ar,n−1 br

0 0 0 · · · 0 0 0 · · · 0 0 0 0 0 · · · 0 0

0 0 0 · · · 0 0 0 · · · 0 0 0 0 0 · · · 0 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 0 · · · 0 0 0 · · · 0 0 0 0 0 · · · 0 0

































The reader may wish to pause at this point and verify that the indices are correct.

These indices are crucial in what follows. The lines can be explained as follows. The

leftmost vertical line indicates the transition from quadratic to linear monomials. All

columns to the left of it represent quadratic monomials, and all columns to the right

of it represent linear monomials. The other vertical line separates the linear mono-

mials from where the constants are to be found. The equations which are described

in the rows found between the horizontal lines then are entirely composed of linear

and constant monomials.

This is actually pessimistic, because it assumes no degenerate (pivot-less)

columns. See Section 12.5.6 on Page 226.

The reader can also see that this region has r− (n− v) + 1 = r− (n− v− 1)
equations. Thus, this region of all-linear equations will be non-empty if r > n− v−
1—which is precisely the “sufficient rank condition.”

By the method outlined here, one can therefore easily find linear equations which

are in the span of a system of quadratic polynomials, considered as a vector-space

over the base field. It should be noted that the “sufficient rank condition” is sufficient

for a non-zero number of such equations to be found, but it is not necessary. More

on this will follow, in Section 12.5.6 on Page 226.

12.5.1 Why is this useful?

A linear equation found by this approach looks like the following:

xi +ai, jx j +ai,kxk + · · ·+ai,n−1xn−1 = bi

where bi is a constant from the base field, and the ai,z are likewise for all z. This

means we can re-arrange to form:

12.5 ElimLin 221

xi = (−ai, j)x j +(−ai,k)xk + · · ·+(−ai,n−1)xn−1 +bi

which can be considered a new definition of xi.

Likewise, all r + v + 1− n linear equations that are found can become redefi-

nitions of one distinct variable each. These can be substituted where ever they are

found in the other equations which make up the polynomial system. This completely

removes the redefined variables from the system. As stated before, the number of

variables is a key factor in the difficulty of a polynomial system of equations, and

reducing the number of them is highly useful.

12.5.2 How to use ElimLin

The algorithm itself is described in Algorithm Box 23 on Page 222. It can be

summarized as follows. First, linearize the system of equations, with the added fea-

ture that all the quadratic terms are in the leftmost columns and the linear terms are

in the rightmost columns. Of course, if the system is not quadratic, then it should

be reduced to quadratic, using the techniques found in Section 11.4 on Page 192 for

example.

Next one performs Gaussian Elimination to obtain Reduced-Row Echelon form.

Denote the number of linear equations found as ℓ. These will be a set of consecutive

equations above the all-zero rows, but below all equations containing any quadratic

terms. If none are found, the algorithm must terminate.

If some are found, then optionally one may elect to reduce the weight of these

linear equations using the techniques of Algorithm 24 on Page 225. Next, for each

equation, a distinct variable found inside it should be selected. (It is important that

each selected variable be unique, but otherwise it is completely unclear how to best

select which variable, of the several available. In practice, the author simply takes

the first valid choice.) If not over GF(2), the equation should be manipulated so that

the variable to be redefined is on one side of the equal sign, and the other terms are

on the opposite side. Over GF(2), this is trivial.

Once this is done, everywhere that this variable is found, including in degree 2

monomials, it should be substituted with its definition. This effectively and com-

pletely eliminates the variable from the system. Nonetheless, the definition should

be stored, so that when the system is finally solved, the original “eliminated” vari-

ables can be recovered. For this reason, each of the linear equations is added to the

set D once we are done with it.

Once all the substitutions are complete, the system of equations will look differ-

ent. In particular, it is likely not to be in Reduced Row Echelon form any longer.

Therefore, the process should repeat, by performing Gaussian Elimination again,

and continuing as before. Obviously, the Gaussian Elimination will be much faster

than normal, as the matrix differs only slightly from its RREF.

222 12 Algorithms for Solving Polynomial Systems

It should be noted that it is not too optimistic to assume that a second or third

iteration will produce ℓ 6= 0. This is because v is reduced by ℓ, and so n is reduced

by (v+1)ℓ. Since ℓt ≈ r + v+1−n, in the next iteration we expect

ℓt+1 = rt+1 + vt+1 +1−nt+1

= rt+1 +(vt − ℓt)+1− (nt − (vt +1)ℓt)

= rt+1 + vt −��ℓt +1−nt + vtℓt +��ℓt

= rt+1− rt +(rt + vt +1−nt)+ vtℓt

= (rt+1− rt)+ ℓt + vtℓt

= ℓt(v1 +1)− (rt − rt+1)

If we could predict how the rank would change, this would be very exact and

useful, but the author cannot predict that at the moment. On the other hand, ℓt(v1 +1)
is large. So initially, if the rank of the system does not change much, we expect the

second run to produce more of these, not fewer. At least it is clear that reducing the

number of variables makes it more likely, not less likely, that linear equations will

be found, because the value of c = m/n is improved.

This process can continue until either no linear equations are found in the span

of the quadratic equations, or until all the variables have been eliminated.

Finally, it should be noted, that monomials of type xy and yz but not xz might

exist, where the letters x,y, and z refer to classes of variables. See Section 12.5.6 on

Page 226 and also Section 12.8 on Page 228.

INPUT: A system of degree 2 polynomial equations.

OUTPUT: Either, a solution or solutions to the system, if the equations have sufficient rank, or

if not, then a reduced system of equations in fewer variables than the original, to be solved by

some other method.

1: D←{}
2: Linearize the system of equations. (See Section 12.3 on Page 211).

3: Perform Gaussian Elimination to result in Reduced Row Echelon Form.

4: Let ℓ be the number of all-linear equations found.

1: If ℓ = 0 then STOP.

2: Else, ℓ > 0, therefore begin

1: (Optional) Apply a rule to reduce the weight of the ℓ equations.

2: For i = 1 . . . ℓ do

1: Move all the variables and constants, but one, to one side of the equal sign.

2: Substitute this redefinition of a variable into the other equations, thus eliminating one

variable.

3: Substitute this redefinition of a variable into the other definitions in D.

4: Add the definition to D.

3: Goto Step 3, “Perform Gaussian Elimination.”

Algorithm 23: The ElimLin Algorithm [Nicolas Courtois]

12.5 ElimLin 223

12.5.3 On the Sub-Space of Linear Equations in the Span of a

Quadratic System of Equations

Consider the span of a set of equations S, namely the set of all equations which

are linear combinations of equations from S. Since a scalar multiple of an equation

in the span is also in the span, and since the sum of two equations in the span is also

in the span, the span forms a vector space over the coefficient field.

Moreover, the sum of two linear equations in the span is a linear equation, and

the scalar product of a linear equation with an element of the coefficient field is

also linear equation. Therefore, the set of linear equations L in the span S forms a

subspace.

In the ElimLin method, because of the submatrix an−v,n−v, . . . ,ar,r, (which is

equal to the (r− n + v + 1)-dimensional identity matrix), we know that the rows

n− v to r are linearly independent. They are therefore a basis for their span. They

are also all linear, and so they form a basis for a subspace of L. It turns out that this

subspace is L itself, which simply means that the span of these r− n + v + 1 equa-

tions forms all of L. This is a statement which is perhaps obvious, but interesting to

prove.

Theorem 88. All linear equations in the span of a set of polynomial equations S,

can be found in the span of the set of linear equations found by executing ElimLin

on S.

Proof. Let A′ be the matrix formed after linearizing S, so that all quadratic terms

are on the left and all linear terms on the right. Let A be the Reduced Row Echelon

form of A′. Denote the number of linear monomials in S as v.

Denote the rows of the matrix A as f1, . . . , fm.

To show that the rows n− v,n− v + 1, . . . ,r span all linear equations in the span

of S, let φ be a linear equation in the span of S. Since it is formed by being a linear

combination of the equations, or rows, of A then it is of the form c1 f1 + c2 f2 +
c3 f3 + · · ·+ cm fm. Let c = (c1,c2, . . . ,cm). One can see that cA = φ . (Here c is a

row vector whereas most vectors in this book are column vectors. Please forgive the

abuse of notation). We will show φ is actually a linear combination only of rows

n−v, . . . ,r. That is to say, it is a linear combination of the ℓ rows found by ElimLin.

But note that if φ were linear, then it has all zeroes as the coefficients of the

quadratic monomials. The linear coefficients are found in columns n− v to column

n−1. (Observe that there are (n−1)− (n−v)+1 = v such columns). Thus the first

coefficient until the (n− v− 1)th coefficient of φ are all zeroes. This means that

cA = s has s1, . . . ,sn−v−1 all equal to zero.

Now consider the m×n matrices B and C where rows 1,2, . . . ,n− v−1 of A are

copied into B, which is otherwise all zeroes, and rows n−v,n−v+1, . . . ,r of A are

copied into C, which is also otherwise all zeroes. Note, rows r + 1,r + 2, . . . ,m are

all zeroes in A in any case. Surely A = B+C and so s = cA = cB+ cC.

Observe that C will have all zeroes in the first n−v−1 columns. This means that

cC = u will have u1,u2, . . . ,un−v−1 all equal to zero. Thus s−u will also have its

224 12 Algorithms for Solving Polynomial Systems

first n− v− 1 entries equal to zero, since s has s1, . . . ,sn−v−1 all equal to zero. We

know cA = s and cC = u so cA− cC has its first n− v−1 entries as zero.

But cB = cA− cC. Therefore cB has its first n− v− 1 entries as zero. If the

first n− v− 1 entries of c are not all zero, then this represents a non-trivial linear

combination of the rows of B, equaling zero. Since the rows n− v,n− v + 1, . . . ,m
of B are all zero, this non-trivial linear combination can be written so that all the

non-zero coefficients are for the rows 1,2, . . . ,n− v− 1. This means the rows of B

are linearly dependent. But the rows of B are in reduced row echelon form, and so

are linearly independent. This is a contradiction.

Therefore, the first n−v−1 entries of c are all zero, and φ is a linear combination

of the rows of C alone. These are precisely the linear equations found by ElimLin.

⊓⊔

Corollary 89. The linear equations L found by running one iteration of ElimLin on

a quadratic system of equations S, forms a basis for the set of linear equations in

the span of S.

Proof. This follows directly from the previous theorem, after noting that the linear

equations L are linear independent because all the rows of A are linearly independent

(by virtue of being in reduced row echelon form). ⊓⊔

12.5.4 The Weight of the Basis

However, a subspace has many bases, not just one basis. There is no reason to

believe that the basis found by ElimLin is the lowest possible weight. In fact, that

would be very lucky.

There are several hueristics which one can imagine that will result in a relatively

low weight basis. However, since ℓ = r + v−n + 1, the number of equations found

is not likely to be very large at all, and therefore the following strategy is feasible,

if expensive.

The method given in Algorithm 24 on Page 225 can be thought of as an expensive

but completely effective Step 4(2)1 for ElimLin, as described in Algorithm 23 on

Page 222.

If there is never a tie in Step 4, then this should produce a very low weight basis

B. It is unclear if this “greedy algorithm” approach is optimal or not. But in the

presence of ties (two vectors both equally of lowest weight), which is not to be

completely unexpected, it is not optimal.

An alternative approach to this would be to swap rows at each iteration of the

Gaussian Elimination. Prior to performing the Elimination on column i, the lowest

weight row j of the matrix, among the rows i, i + 1, i + 2, . . . ,m such that a ji 6= 0,

should be selected. This row j should be swapped with row i. This is called “naı̈ve

sparse Gaussian Elimination” or “lowest-weight row Gaussian Elimination.”

Structured Gaussian Elimination is an old technique, effective but sub-optimal.

For example, it is used currently in SAGE [7] for sparse GF(2)-matrix elimination.

12.5 ElimLin 225

INPUT: A set of linear equations S, which are a basis for a subspace.

NOTE: When used with ElimLin, this set S is given by the rows n−v,n−v+1,n−v+2, . . . ,r
of the matrix. The sub-space is the set of linear equations in the span of a set of polynomial

equations over any field.

OUTPUT: A low-weight basis for the span of S.

1: T ←{0}
2: B←{}
3: Enumerate the span of S by using the Gray Code and Rapid Subspace Enumeration (See Sec-

tion 9.2 on Page 135). Call this set L.

4: Choose the lowest weight member of L, call it u.

5: Insert u into B.

6: For each vector t ∈ T do

1: Insert u+ t into T .

2: Remove u+ t from L.

7: If L is non-empty, then go to Step 4, or else return B.

Algorithm 24: An Expensive but Effective Way to find a low Weight Basis [G.

Bard]

The spike in matrix density normally associated with ordinary Gaussian Elimination

is somewhat mitigated by this approach.

Thus we have listed two methods for reducing the weight of the basis. One is

very expensive (see Algorithm 24 on Page 225), and the other (using Naı̈ve-Sparse

Gaussian Elimination instead of ordinary Gaussian Elimination) is almost free, be-

ing of linear expense per column or quadratic (and thus invisible) expense over all.

But we have not stated why it is important that the basis be low weight.

When a linear equation (the definition) is substituted back into the original equa-

tions, several new terms are added to each old equation. Some will cancel out exist-

ing terms, but if the original was sparse, this cannot be expected often. Therefore,

the weight of the row will increase. Also, the size of the matrix is decreasing. Since

β is a ratio of these two things, the sparsity will increase significantly. Therefore it

is crucial that the definitions be low weight. Naturally, being the bottom ℓ rows of

the RREF, our definitions will be from the densest stage of the RREF.

12.5.5 One Last Trick for GF(2)-only

In a GF(2)-polynomial system, if it is ever found that some quadratic monomial

xix j = 1, then one can substitute this equation with the two equations xi = 1 and

x j = 1. This in turn means that 1 can be substituted for xi and x j where ever they

are found, and also xaxi becomes xa. Thus, even one such equation is bountiful in

eliminating monomials and variables.

In pratice, the way to do this is after Step 4 in the ElimLin algorithm, detect the

equation of the form xix j, and then substitute this row with two rows, one indicating

xi = 1 and the other indicating x j = 1. The rest of the ElimLin algorithm, in one

226 12 Algorithms for Solving Polynomial Systems

or two iterations, will accomplish the remainder of the substitutions that come by

consequence of this discovery.

12.5.6 Notes on the Sufficient Rank Condition

If the “sufficient rank condition” exists, then certainly a linear equation will be

found. This can be seen by examining the matrix on Page 220. But this condition is

not neccessary.

First, consider the possibility that, during the Gaussian Elimination, at column i,

that there are no non-zero elements in ai,i,ai+1,i,ai+2,i, . . . ,am,i. The elimination will

resume with the next column. If the rank is r then the last element of the diagonal

of ones will occur not at ar,r but at ar,r+1 (assuming that this happens only once).

Thus, “pivotless” columns, as these are called, will shift the diagonal strand of ones

to the right.

Second, structural considerations matter. For example, it might be that certain

variables never appear together in the same monomial. This means there is an en-

tire column (associated with the forbidden monomial) which is all zeroes, for each

possible pair of variables which never share a monomial.

Amplification

Suppose that there were two categories of variable in the polynomial system of

equations, x’s and y’s. Suppose further that xiy j terms never exist. Then when one

goes to XL, no monomials of the form xiy jyk or xix jyk exist. And so one has a

monomial count of

2

(
n/2

3

)

+2

(
n/2

2

)

+2

(
n/2

1

)

≪
(

n

3

)

+

(
n

2

)

+

(
n

1

)

For example, a 256 variable system with 128 x’s and y’s would have 682,752

cubic, 16,256 quadratic and 256 linear terms, for a total of 699,264 terms. A general

system of 256 variables would have 2,763,520 cubic terms, 32,640 quadratic and

256 linear terms. The β value at the quadratic level would be (for a random system)

16256+256

32640+256
= 0.50194

but the cubic would be

682752+16256+256

2763520+32640+256
= 0.25006

Another interesting point is that the overwhelming fraction of the monomial

count comes from the highest degree alone. This is because

12.6 Comparisons between XL and F4 227

(
n

3

)

≫
(

n

2

)

and so these improvements are expected.

A View from the Point-of-View of Randomness

If one considers the coefficients of an equation as random variables, linear equa-

tions are indeed expected. For example, if the coefficients come from the ciphertext

of some encrypted message, they should be 1 and 0 with nearly equal probability.

Thus, a few equations, roughly 2−p out of the total, will have p particular coeffi-

cients as zero. If there are 2m equations, 2m−p will have those p particular coeffi-

cients as zero (in expectation). It is easy to see that a “lucky” equation might have

so few quadratic coefficients that these can be eliminated by Gaussian Elimination,

and so will result in a linear equation in the span.

Interestingly, it should be noted that in a cryptanalytic attack of the cipher

Keeloq, there was one equation which had only variables from the secret key in

it, even though only 64 of 384 variables in the system were elements of the secret

key (see [84]).

12.6 Comparisons between XL and F4

There have been several discussions comparing the XL algorithm and the F4 al-

gorithm. In some ways, this is wasteful, because preprocessors and heuristics for

improving one should work for improving the other, as they are so similar. The

scholarly time and energy spent on rivalry would be better applied to cooperation.

In any case, the discussion has been decided by two pivotal papers, one in the theo-

retical direction, and the other in the practical direction. Note, the F4 algorithm is by

Faugère [109], and is a Gröbner Bases method, and XL is described in Section 12.4

on Page 213. Meanwhile, the ElimLin algorithm is described in Section 12.5 on

Page 219 and the XL-II algorithm is described in [80].

In theoretical terms, the XL algorithm is very simple, but wasteful. Somewhat

improved are ElimLin, and XL-II. Then the F4 algorithm is remarkably similar to

XL-II, provided that in XL-II one does not first multiply an equation by xi as well as

x j, only to later multiply those two by x j and xi respectively—thus making two equa-

tions which are both xix j times the original and therefore identical and redundant.

Some sort of tagging system can exclude this overhead. Of course, if D− d = 20,

for example in [232], then this is a non-trivial problem.

The F4 algorithm is a bit more sophisticated and the F5 algorithm is more sophis-

ticated still. The set of actions of each of these essentially form a subset-superset

relationship, with the more complex algorithms doing everything that the simpler

algorithms do. For an extremely detailed coverage of this topic, see [26]. It is an

228 12 Algorithms for Solving Polynomial Systems

excellent paper to read because the argumentation cements the precise details of the

various algorithms into one’s head.

But in practice, it is precisely this sophistication that leads to speed differences

and memory-usage differences. Yang, Chen, Bernstein and Chen settled this issue

in [232], where those authors had a 20-variable system over GF(256) which was

solved using the XL-II algorithm, and F4 implemented by Magma simply crashed

due to lack of memory when examining even the 15-varible case—with 16 giga-

bytes of RAM available. Note a 15 or 20 variable system over GF(256) is roughly

equivalent to a 120 or 160 variable system over GF(2). It should be noted that Yang,

et al, use the Block Wiedemann of Don Coppersmith for the linear algebra (see Sec-

tion 5.2.3.1 on Page 72, and Appendix D on Page 323).

One interesting historical note is that both these algorithms were foreshadowed

by Lazard [158]. In fact, Lazard noticed a connection between Gaussian Elimination

after Linearization and Gröbner Bases via the Buchberger algorithm in 1983. For

comparison, the first XL paper was [82] in 2000, and the first F4 paper in 1999

[109]. This connection was pointed out to the author by Dan Bernstein, and is also

mentioned in [232].

12.7 SAT-Solvers

The use of SAT-solvers to solve polynomial equations over finite fields was first

carried out by the author and Nicolas Courtois in [33]. However, it was proposed

by Nicolas Courtois in his PhD dissertation [64], under the suggestion of Jacques

Patarin. Since then, it has proven to be a useful technique. In particular, this author

uses MiniSAT [6] [104].

The idea is that all NP-Complete problems are reducible to each other, and in

particular, the NP-Complete problem called SAT is well-studied. There are annual

competitions in which cash prizes are given for the fastest programs which can solve

this problem for example cases. Strictly speaking, unless P = NP, these algorithms

cannot run in polynomial time. However, for specific given problems, they might

well run “fast enough.”

The conversion between a GF(2) system of equations and the input to a SAT

solver (a conjunctive normal form expression) will be given in Chapter 13. A rough

and high-level introduction to the operation of SAT solvers will be given in Chap-

ter 14.

12.8 System Fragmentation

Very rarely, a system of polynomial equations can be separated into two or more

sets of equations, such that no equation in one set shares a variable with any other

equation from any other set. We call such a system separable. We do not expect

12.8 System Fragmentation 229

this to happen very often, but rather we will show how to force it to occur, when

possible.

In this chapter, we present an algorithm for determining separability, as well as

performing the actual separation. While cryptographers use systems of polynomials

over finite fields, the methods in this note will work on any field or ring. Therefore,

let R be any ring.

12.8.1 Separability

Suppose one has two systems of multivariate polynomial equations over the same

ring. In particular, f1(x1, . . . , xn) = 0, f2(x1, . . . , xn) = 0, . . . , fm(x1, . . . , xn) = 0

and g1(y1, . . . , yt) = 0, g2(y1, . . . , yt) = 0, . . . , gs(y1, . . . , yt) = 0.

Obviously this is one system of m equations in n unknowns labeled, x1,. . . , xn,

and another system of s equations in t unknowns labeled y1,. . . , yt . What is also

clear, is that it is a sytem of m + s equations in n + t unknowns, labeled x1, . . . , xn,

y1, . . . , yt . Since the difficulty of solving polynomial systems of equations is worse

than linear in the number of equations and number of variables, (if P 6= NP, it is

worse than polynomial), solving the larger system will be much worse than solving

the smaller systems individually. The property of separability is obvious in that it

can be determined by inspection in this example. Given a random sparse system of

equations, it can be hard to determine separability by mere examination.

What is less obvious is that if you “scramble” the equations of the large system,

then the separability becomes obscure. Consider an example where the polynomials

f1, . . . , fn and g1, . . . , gs are linear. Then we can write a matrix F and a matrix G

such that Fx = b1 and Gy = b2. To further simplify matters, let m = n and s = t, in

other words, let F and G be square. The larger system becomes

[
F 0

0 G

][
x

y

]

=

[
b1

b2

]

The structure of the zeroes of this arrangement will make the separability of the

system very clear, and it will be obvious how to write down the disjoint systems of

equations from the larger matrix. But now consider a random n+s-dimensional per-

mutation matrix P. Multiplying the above equation by P on both sides will “scram-

ble” the larger matrix, and while there will still be many zeroes, it is not clear that

the system is separable, or futhermore, how to separate it.

The only clue will be that out of (n + s)2 entries, there will be at least 2ns ze-

roes. The remaining n2 + s2 entries may or may not be zero, and so the sparsity

of the matrix is at least 2ns/(n + s)2. Many matrices have this sparsity but are not

separable.

Definition 90. Let R be any ring. Let f1(x1, . . . ,xn), . . . fn(x1, . . . ,xn) be a set of

polynomial functions R
n → R. If there exists a partition of f1, f2, . . . , fn into two

non-empty disjoint subsets A and B, such that if fi ∈ A and f j ∈ B implies that fi

230 12 Algorithms for Solving Polynomial Systems

and f j do not share any variables with non-zero coefficients, then the system of

equations f1(x), . . . , fn(x) is separable.

In cryptography, if the system has thousands, if not millions, of equations, then

one cannot “look at” the equations at all, as the required piece of paper to write them

would be huge. Therefore, automation is required.

12.8.2 Gaussian Elimination is Not Enough

In the linear example above, Gaussian Elimination would resovle the mystery.

This is an expensive operation, taking Θ((n + s)3) operations, but it also solves

the system itself. For a polynomial system of equations, one can “linearize”, as ex-

plained in Section 12.3 on Page 211. This means creating a new “dummy” variable

for each monomial in the system. Thus x1x5x9 might be mapped to ya, while x1x9

and x5x9 might be mapped to totally unrelated y’s. Yet, if fi contained x1x5x9, and

f j contained x5x9, but were otherwise disjoint, they would be a non-separable pair

of equations in truth, but appear to be separable in the linearization. In fact, fi and

f j must appear in the same set when the f ’s are partitioned. This is invisible in

Linearization followed by Gaussian Elimination.

12.8.3 Depth First Search

We will solve this problem by constructing a graph, and then performing an algo-

rithm called a “Depth First Search.” One vertex vi should be made for each variable

xi. An edge should be drawn between vi and v j if and only if xi and x j ever appear

in the same equation, anywhere in the system, regardless if in the same monomial

or not. This graph tends to be rather dense.

The algorithm called “Depth First Search” (or DFS) is well known, and can be

found, for example, in [63, Ch. 22]. Basically, one keeps an array of flags for each

vertex, initially set to false. These are marked true when a vertex is visited. First,

one visits some arbitrary initial vertex, and sets its flag to true. Then, one visits each

of its unflagged neighbors, one at a time, setting those flags to true. Of course, upon

the first visitation of the first neighbor, all of that neighbor’s neighbors will have to

be visited, and so the second neighbor of the original vertex is only visited after all

the neighbors of the first neighbor are visited. Thus the name “depth first search.”

When this process is fully complete, if no unflagged vertices remain, then the graph

is connected. Otherwise, it is disconnected.

At each visitation, one must check the flags of each of the neighbors. There are d

neighbors (the average degree of the graph) on average. This is O(|V |d) work, since

each vertex is visited exactly once. Note that |V |d = 2|E|, but the notation O(|E|)
while absolutely correct, does not really express how the algorithm works.

12.8 System Fragmentation 231

If a Depth First Search concludes that the graph is not connected, then that means

there is a set of vertices A and set of vertices B such that no edge ever goes from

any vertex of A to any vertex of B. Therefore, all the variables associated with the

vertices of A and their equations form a totally unrelated system of equations from

the variables and equations associated with the vertices of B.

The graph, if not connected, has several connected components, called “islands”

in the slang of graph theory. It is trivial to convert the Depth First Search into an

island enumerator. First, run the DFS. Any nodes visited form the first island. If any

nodes remain, pick one of those that remain and do a DFS from that point, resetting

the visitation flag. The vertices visited the second time comprise the second island.

Repeat until all vertices have been assigned to an island.

12.8.4 Nearly Separable Systems

In the rest of this section we restrict ourselves to finite rings of size |R| = q.

Suppose G = (V,E) is a graph that is connected. Suppose further that there is some

vertex vi ∈ V such that the graph induced by removing vi is disconnected. By “re-

moving a vertex”, we mean that a new graph, G′ = (V ′,E ′) is created. The vertices,

V ′ = V −{vi}, is just the old set of vertices with vi removed. The edges which

contain vi at either end are removed, but all others are retained. If this graph is dis-

connected, and the original was connected, then we say that vi is a bridge-vertex.

Since solving a polynomial system of equations in n+s variables is much slower

than solving one in n and another in s, it would be advantageous to “remove” the

bridge vertex, and obtain two smaller systems.

Since the equations are over a finite ring (usually GF(2) in fact), one can simply

guess xi. For example, over GF(3), one would substitute xi = 0, xi = 1, and xi = 2,

to obtain 3 new systems of equations, each of which was separable into two smaller

pieces. Solving these six new small systems yields the answers to the original system

of equations.

This suggests the following algorithm:

INPUT: A system of polynomial equations.

OUTPUT: Either the indication that the system is separable, or if not, then a set of variables,

such that if the value of one of them alone is known, the system becomes separable. This set

may be empty.

1: Generate the graph, G = (V,E), according to Section 12.8.3 on Page 230.

2: Run DFS to see if G is separable.

3: If not, for each vertex vi:

• Remove vi.

• Run DFS to see if G is separable.

• If yes, report that vi is a bridge vertex, and restore vi.

• If not, restore vi.

Algorithm 25: Simple Vertex Removal Algorithm [Classic]

232 12 Algorithms for Solving Polynomial Systems

Assuming the original system is not separable, this would take O(v2d = ve) time,

where v = |V |= n, e = |E| and d is the average degree of the vertices of the graph.

The total running time is |V |= n times as much as before, and thus still polynomial.

12.8.5 Removing Multiple vertices

Alternatively, one could search all graphs formed by removing every possible

pair, or triplet of vertices. If one searches for a set of r variables to remove to dis-

connect the graph, we say the algorithm is searching for r-tuples. The algorithm is

listed as Algorithm 26 on Page 234.

The number of possible r-tuples is
(|V |

r

)
. And the running time of the Depth First

Search will be |E| times that. While this is still polynomial for any fixed r, and

solving the entire system of equations is not polynomial time if P 6= NP, eventually

this would get expensive. Perhaps r = 5 is the limit of feasibility. Note that this

algorithm is not polynomial time if r is not fixed. Usually, this would be stated as

the algorithm is “pseudo-polynomial time in r” (see Section 11.4 on Page 192). The

running time is

Θ(

(|V |
r

)

|V |d) = O(|V |r+1d) = O(|V |r|E|)

for finding a r-tuple. Now the complexity of solving the system after the separation

must be considered.

If one has removed r = 1,2, or 3, vertices, then one must solve 2q, 2q2, or 2q3,

systems of equations instead of just one, or 2qr in general. If q is small, this is quite

manageable. Since we usually are concerned with GF(2), where q = 2, solving one

system of 400 variables would be much worse than solving 16 systems of roughly

200 variables, using n = 400, r = 3, q = 2 as an example.

In other contexts, when a trade-off like this is found, one might say that perhaps

r-tuples of size r = logn might be the right size, instead of always using triples

or pairs. Unfortunately, checking for disconnection by removing all sets of log2 n

verteces (instead of single points, pairs, or triplets), does not result in a polynomial

time algorithm, because
(

n
logn

)
is not polynomial to n.

12.8.6 Relation to Menger’s Theorem

The vertex connection number of a graph is the smallest number of vertices that

can be removed from it to disconnect it. Menger’s theorem states that if there are

exactly k vertex-distinct paths from vi to v j, then the vertex connection number of the

graph is at most k. A corollary is that the vertex connection number is the minimum

of the number of vertex distinct paths between vi and v j, for all vi,v j ∈V .

12.8 System Fragmentation 233

This could be found with |V |2 runs of a max-flow-min-cut algorithm. However,

that is not useful in this problem. The reason is that we are interested in balanced

cuts, namely cuts that leave the graph in roughly two equally sized parts in terms of

the number of vertices. This is explained below.

12.8.7 Balance in Vertex Cuts

The issue of balance among the halves of the graph is crucial. Suppose the system

of 500 variables was broken by removal of 2 variables to make a system of 248

variables and a system of 250 variables. Then it is possible that solving 4 systems

of 248 and 4 systems of 250 is feasible, while solving a system of 500 variables

might be infeasible. On the other hand, suppose the removal of 2 variables resulted

in a system of 3 variables, and a system of 495 variables. It might be that solving

a 495 variable system 4 times is better than solving a 500 variable system, but the

difference is probably not enough to make an infeasible system feasible. It might

even make matters worse, since the solving must occur four times.

Therefore, when searching for removal sets, it is useful to keep track of all re-

moval sets encountered. The “difficulty” of a removal set should be the size of the

largest island that remains after the removal. This also gives a strong advantage to

removal sets which cut the graph into three rather than two distinct subsystems, as is

quite reasonable. The vertex subset with the smallest “difficulty” should be chosen.

12.8.7.1 Infinite Fields and Large Finite Fields

At the time of this writting, Kenneth Wong, Robert Lewis and the author have

joint work on an algorithm, using simulated annealing and other graph-theoretic

methods, that takes this into account, and produces a balanced cut more directly

[231]. There was not time to incorporate that work here, but see the cited paper.

Furthermore, for infinite fields, or large finite fields, it is not possible to simply

guess the values of c removed variables in a vertex cut. However, Robert Lewis has

shown how to resolve the matter using resultants. The variables are removed without

guessing their values. See [231].

12.8.8 Applicability

This algorithm will be of interest to cryptographers from several areas. First,

one can accelerate solving a system of equations. Second, those building stream

ciphers, block ciphers, hash functions, and public key cryptosystems from random

sparse systems of polynomials equations will benefit from checking those systems

for separability (e.g. QUAD) [42]. If the random system is separable, it would be

234 12 Algorithms for Solving Polynomial Systems

INPUT: A system of polynomial equations, and a parameter r.

OUTPUT: A set of at most r variables, such that if the value of each is known, the system

becomes separable, or a failure if no such set of variables (of size r or smaller) exists.

1: Generate the graph, G = (V,E), according to Section 12.8.3 on Page 230.

2: Make a list L of all subsets of V of size r or less, including the empty set.

3: C←{}
4: For each subset S ∈ L do

a. Remove the vertices in S from the graph, and any edges incident on them.

b. Run a Depth First Search to see if the graph is disconnected.

c. If DISCONNECTED then

i. Measure the size of each island in the disconnected graph.

ii. Let d be the size of the largest island.

iii. Insert S into C, tagging S with the difficulty d.

d. Restore the vertices from S and any edges incident on them.

5: If C is empty, return failure.

6: If C is non-empty, return the subset S tagged with the smallest d.

Algorithm 26: Searching for an r-tuple of variables to guess. [G. Bard]

easy to break. Third, those developing general purpose algorithms for solving sys-

tems of equations can use this method to make sure that sample problems are not

“too easy” when generating random, highly sparse, systems.

Analogs for this method exist in the sparse linear system of equations world. See

[203, Ch. 13.6]

12.9 Resultants

Prior to the discovery of Gröbner Bases by Bruno Buchberger in the middle of

the 20th century, the method of resultants was the primary method for solving poly-

nomial systems of equations. There are many cases in which resultants out perform

Gröbner Bases [162].

12.9.1 The Univariate Case

The resultant of f (x) and g(x) is a value which is zero if and only if f and g

have a root in common, in the algebraic closure of the field being discussed. First,

this is useful in its own right, but also it is useful because f has a repeated root if

and only if f (x) and f ′(x) share a root. The resultant of f (x) and f ′(x) is called the

discriminant of f (x).
The discriminant is important in its own right in algebraic geometry, because

when it equals zero, the polynomial has a repeated root and is in some way “degen-

12.9 Resultants 235

erate”. For example, the discriminant of ax2 + bx + c is b2−4ac, which is familiar

with to anyone who knows the quadratic formula.

There are many methods for calculating resultants. One choice is the determinant

of the Sylvester Matrix [228], for two polynomials f of degree d1 and g of degree

d2, which is given by

res(ad1
xd1 +ad1−1xd1−1 + · · ·+a1x+a0,bd2

xd2 +bd2−1xd2−1 + · · ·+b1x+b0) =

=





















ad1
ad1−1 ad1−2 · · · a1 a0 0 0 0 · · · 0 0

0 ad1
ad1−1 · · · a2 a1 a0 0 0 · · · 0 0

0 0 ad1
· · · a3 a2 a1 a0 0 · · · 0 0

...
...

...
. . .

...
...

...
...

...
. . .

...
...

0 0 0 · · · 0 0 0 ad1
ad1−1 · · · a1 a0

bd2
bd2−1 bd2−2 · · · b1 b0 0 0 0 · · · 0 0

0 bd1
bd2−1 · · · b2 b1 b0 0 0 · · · 0 0

0 0 bd2
· · · b3 b2 b1 b0 0 · · · 0 0

...
...

...
. . .

...
...

...
...

...
. . .

...
...

0 0 0 · · · 0 0 0 bd2
bd2−1 · · · b1 b0





















where the polynomial f is repeated over d2 rows and the polynomial g is repeated

over d1 rows, to produce a (d1 +d2)× (d1 +d2) matrix. Note that in every case, the

constant term of each polynomial will appear in the final column, exactly once, for

both polynomials. This is a good memory-hook when doing the operation by hand.

Another memory hook is that the Sylvester matrix is always square.

12.9.2 The Bivariate Case

Suppose we have two polynomials, f (x,y) = x2 +y2−1 and g(x,y) = x3−x−y,

and we are curious where these curves intersect. This is a very basic question in the

study of polynomials from Q[x,y].
We can write these polynomials as polynomials in y alone, whose coefficients are

from Q[x], the set of polynomial functions in the variable x, with rational number

coefficients. Then we obtain f (y) = (1)y2 +(0)y+(x2−1) and also g(y) = (−1)y+
(x3− x). The resultant, found via the Sylvester Matrix, is therefore given by

det





1 0 (x2−1)
−1 (x3− x) 0

0 −1 (x3− x)



 = (1)det

[
(x3− x) 0

−1 (x3− x)

]

+0+(x2−1)det

[
−1 (x3− x)
0 −1

]

= (x3− x)2 +(x2−1)(1− x3 + x)

= x6− x5−2x4 +2x3 +2x2− x−1

= (x−1)(x+1)(x4− x3− x2 + x+1)

236 12 Algorithms for Solving Polynomial Systems

The quartic factor has no real roots, and so we can concentrate on x = 1 and

x =−1. We can see that this leads to the points of intersection (1,0) and (−1,0) by

substituting into either of the original polynomials.

One can see many inefficiencies here, because we are taking a determinant of a

matrix which might become large, and whose entries are from a polynomial ring.

Even multiplying two elements of a polynomial ring is expensive. Therefore, other

methods have been invented, including taking the determinant of the Bezout-Caley

Matrix [160], Dixon’s Resultant Method [161], and others.

12.9.3 Multivariate Case

Now suppose we have m polynomial equations f1, f2, . . . , fm in n variables,

x1,x2, . . . ,xn. If a particular x = (x1, . . . ,xn) is a solution to the polynomial system,

then it is a solution to each polynomial individually. This means that it is a common

root of fi and f j for any i and j in {1,2, . . . ,m}.
Suppose we rewrite all the polynomials as if they were not over Q[x1, . . . ,xn],

but rather as univariate polynomials in terms of x1, whose coefficients were from

Q[x2, . . . ,xn]. This creates m univariate polynomials. Accordingly, there are
(

m
2

)
pos-

sible resultants, of fi and f j. For any solution x, each of these polynomials (which

are in terms of x2, . . . ,xn) must be satisfied.

Thus we have replaced m equations in n unknowns with
(

m
2

)
equations in n− 1

unknowns. Also, we need not keep all the equations necessarily. Vaguely, there is

some redundancy. Of course, if there are many more equations than unknowns, this

opens up opportunities for other algorithms in this chapter.

We could say we have “eliminated” x1 from the system of equations, because we

have a new system without it. But perhaps it would have been wiser to eliminate xn

or some other variable. The methods and techniques related to this are, accordingly,

called “Elimination Theory” [86, Ch. 3].

12.9.3.1 Variables versus Parameters

Suppose we wish to frequently find the intersection of three spheres. The equa-

tion of a sphere with center (cx,cy,cz) and radius r is given by

(x− cx)
2 +(y− cy)

2 +(z− cz)
2− r2 = 0

and so we could simply substitute the correct values in each case, and solve. But it

might be more useful to solve the general case, keeping (cx,cy,cz) as unknown.

There is (x,y,z), which we want to find out, and it is common to each of the 3

spheres. But the three coordinates of the center, plus the radius, is another 4 un-

knowns per equation or 12 total. Surely a system of polynomials with 15 unknowns

is fairly complex, but this problem seems simple.

12.9 Resultants 237

There is a further distinction that we have not yet made. In any particular in-

stance of the problem, the coordinates of the centers and of the radius are known,

and only take a single value. Meanwhile, (x,y,z) might have no value (if there are

no solutions) or multiple values, and they are not known at the start of the problem.

Thus unknowns are divided into “variables” and “parameters” in the theory of re-

sultants and in Elimination Theory, whereas normally “variables” and “unknowns”

are treated as synonyms.

A fascinating generalization of this is the Apollonius problem [224], where one

wants to find one of the 8 circles tangent to three particular given circles. In three

dimensions, this becomes a search for a sphere tangent to four given spheres. Usu-

ally we want to solve this problem in relation to molecular chemistry, for example

in lock-and-key drug design, to discover what atom or molecule can best fit in a

receptor to block it. Hence the term “blockers” for this wide category of drugs. See

[163] for example.

12.9.3.2 Solving the System

The following is oversimplified, and much faster methods exist. The objective,

however, is to demonstrate what sorts of advantages that methods for solving poly-

nomial systems based on resultants have over the other methods in this book.

One method to solve the problem then would be to write the 3 equations, which

now are in 3 variables with 12 parameters. We could eliminate x, which means

rewriting each equation as a univariate polynomial in x, and taking all
(

3
2

)
resultants.

Now we have 3 equations, each in y and z plus 12 parameters. Call these “the

Stage 1 equations.” Any solution to the original equations is a solution to these. We

could eliminate y, which means writing each of the Stage 1 equations as a univariate

polynomial in y, and taking all
(

3
2

)
resultants.

At this point, we have 3 equations, each in z plus 12 parameters. Call these “the

Stage 2 equations.” Any solution to the originals has a z which satisfies each of

these. Since z is a solution to every equation, then z is a solution to the gcd (greatest

common divisor) of every pair of these equations. By taking the gcd of all the equa-

tions in Stage 2, we will have a relatively small polynomial, in terms of z (and the

12 parameters).

By whatever means are appropriate to the problem (numerical methods or al-

gebraic methods), we can recover all the possible values of z from these Stage 2

equations. Then we can plug those into the Stage 1 equations to get the values of y.

Finally, we can plug those into the original equations to get the values of x.

Lastly, there may be times when we do not care about the value of x, for some

reason inherent in the problem. Eliminating these “boring” variables first would

produce a system without them. We would have no obligation to back-solve and

recovery their values, and we could stop early.

238 12 Algorithms for Solving Polynomial Systems

12.9.4 Further Reading

The use of resultants in cryptography is extremely rare. One example is the pa-

per [215]. Another, by Kenneth Wong, Robert Lewis and this author, is referred to

in Section 12.8.7.1 on Page 233, which is useful for separable systems over large

finite fields, or infinite fields. One “removes” the variables via resultants rather than

guessing their values. Nonetheless, we have not done the subject sufficient justice

here. To learn more, read [86, Ch. 3.5–3.6] or [59, Sec. 3.3.2].

12.10 The Raddum-Semaev Method

Recently, a new approach to solving sparse polynomial systems of equations

over GF(2) was introduced by Hårvard Raddum and Igor Semaev. Here, we give

a general description but the details can be found in [196], [132], and [209]. More

recently some proofs and interesting properties can be found in [210] and [197].

One model of sparsity could be that any particular equation typically only in-

volves a subset of the variables of the entire system. This is somewhat distinct from

the normal β view of sparsity, for obvious reasons. Ordinarily, a low β would imply

a small fraction of the possible monomials are present, but perhaps most or all vari-

ables are present. Here, we discuss a form of sparsity when only a limited number

of variables actually appear in each equation.

In cryptanalysis, this could happen, as variables from round i are usually related

to those from round i−1 and to round i+1. In fact, Raddum and Semaev used this

method to attack the Data Encryption Standard (DES) to 4 and 5 rounds. The 4 round

method was much faster than brute force. In Bivium and Trivium (see Section 5.1.2

on Page 61), the equations each have only 6 or fewer variables in them.

12.10.1 Building the Graph

First, an undirected graph is constructed. Every vertex in the graph will have a

few variables associated with it. Thus for any v ∈V , the set Var(v) is a subset of the

set of variables in the equation system. Each vertex will also have a list of binary

strings. The length of those strings will be equal to the size of Var(v). Each one is

a possible assignment of values 1 or 0 to each variable. As the algorithm proceeds,

impossible assignments will be identified and deleted.

Each equation in the system is represented by a vertex, and associated with that

vertex is an exhaustive list of all the settings for the variables which it contains, that

would result in that polynomial being satisfied. If a polynomial constains ℓ variables,

then there would be between 0 and 2ℓ entries in this list, and typically 2ℓ−1. These

vertices are called the “upper set”. The easiest way to construct this list to simply

check each of the 2ℓ possibilities.

12.10 The Raddum-Semaev Method 239

Next, we will add a “lower set” of vertices. For any two vertices vi and v j in the

upper set, first calculate Var(vi)∩Var(v j). If this is empty, do nothing and continue

to the next pair of “upper set” vertices. If this is non-empty, then create a new vertex

w. We will set Var(w) = Var(vi)∩Var(v j). The list associated with vertex w shall be

initially all 2|Var(w)| possibilities.

An edge shall now be drawn from vi to w and also from v j to w. There are to be

no other edges in the graph. Moreover, since edges only go from the “upper set” to

the “lower set” then the graph is bipartite.

One detail has been omitted. It is possible that

Var(vi)∩Var(v j) = Var(vk)∩Var(vm) = S

and in fact this might happen quite frequently. If this is the case, then the first time

the intersection is performed (namely vi and v j), a vertex is created representing S

(call it w). During some later intersection (perhaps vk and vm), this same set may

appear again. Do not create a new vertex w but instead draw edges from w to both

vk and vm. This is very important, otherwise the “lower set” would be huge.

12.10.2 Agreeing

The primary vertex operation is “agreeing” and proceeds as follows: For any

two vertices that are connected by an edge, a comparison is made of the list of

possibilites for those two vertices. Any variable can either be true or false, but it

cannot be both at the same time. Thus it is likely that some of the entries of one

list are mutually exclusive with some of the entries of the other list. Since every

polynomial must be satisfied in a solution, any entry of one list that cannot agree

with any of the entries of the other list must be spurious. And thus a few settings

can be ruled out, and therefore deleted.

The easy way to do this is to realize that in the graph, if an edge goes from vi to

v j, then either Var(vi)⊂Var(v j) or Var(v j)⊂Var(vi). In fact, the “upper set” nodes

contain the “lower set”. Take the list to be a matrix, with each row being a possible

set of assignments, and each column associated to one of the variables in Var(v).
Without loss of generality, let us assume that Var(vi) ⊂ Var(v j). Make a copy of

the matrix for v j (call it M), and then delete all columns from M associated with

variables not found in vi. If there is a row found in M which is not found in the

matrix of vi, then delete that row from the matrix of v j. Likewise, if there is a row

found in the matrix of vi that is not found in M, then delete that row from v j. Once

this is done, vertices vi and v j are said “to agree”. This is because their lists share

the same settings for any variables that concern both vertices.

240 12 Algorithms for Solving Polynomial Systems

12.10.3 Propigation

Initially, one can try to run agreeing on each edge. After that, whenever a vertex

has any changes in its list, it should try to agree with each of its neighbors. This

way, changes and newly discovered facts propagate through the system. There are

probably more sophisticated ways of detecting when an “agreeing” should occur.

12.10.4 Termination

Two possible outcomes can terminate the algorithm. First, if each vertex has

only one string in its list (one row in its matrix), then the algorithm has found the

unique solution to the problem. Second, one or more vertices might have no strings

in its list (an empty matrix). This means that the equations have been shown to be

unsatisfiable.

Of course, it may come to pass that all possible “agreeing” operations have been

executed, and the system has not been terminated. For this situation, two more op-

erations exist.

Basically, a configuration not on a list is not possible. However, there are still im-

possible configurations which are on the lists. All deleted configurations are deleted

because they cannot be part of a satisfying solution. By contrapositive, a satisfying

configuration will never be deleted. But this is very different from saying all non-

satisfying configurations will be deleted. The agreeing step, along with the gluing

step to be presented momentarily, will remove many, but not necessarily all, spuri-

ous configurations.

12.10.5 Gluing

In general, given two sets X and Y , one can partition them into A,B,C such that

A∩C = {} and B = X ∩Y . This is essentially the operation of drawing the Venn

Diagram of X and Y , with B being the football shaped region in the overlap of the

two circles, and A and C being the two cookie shaped regions on either side. See

Figure 12.1.

Once all possible agreements have been made, consider two vertices vi and v j.

We are going to merge these two vertices, and make a new vertex, call it vw. We

will calculate (A,B,C), the Venn partition of Var(vi)∪Var(c j). That is to say, B =
Var(vi)∩Var(v j) while A∩C = {}. Then set Var(w) = Var(vi)∪Var(v j).

Each string in the list of vi (or row in the matrix of vi) consists of settings for

variables in A and in B. Next, calculate a tag for this string/row representing the

settings for variables in B alone (that is, deleting the settings for A). Do this also for

every string/row in the list/matrix of v j.

12.10 The Raddum-Semaev Method 241

Fig. 12.1 Venn Diagram

Now, for every string/row in the list/matrix of vi, make a new string/row in the

list/matrix of w for each string/row in the list/matrix of v j whose tag is the same

as the tag of the row/string we are considering from vi. (We will give an example

momentarily). The entries for the A variables come from vi, and the entries for the

C variables come from v j. By virtue of the fact that the tags are the same, we know

that these two strings/rows agree on the B variables.

This requires an example. Suppose vi has Var(vi) = x1,x2,x3 and Var(v j) =
x3,x4,x5. Then A = {x1,x2} while B = {x3} and of course C = {x4,x5}. Now sup-

pose (to use the matrix analogy)

Mi =











x1 x2 x3

0 1 0

1 1 0

0 0 1

1 1 1

1 0 1











; M j =











x3 x4 x5

0 1 1

0 0 0

0 0 1

1 0 0

1 0 1











then we should finish with

Mw =

























x1 x2 x3 x4 x5

0 1 0 1 1

0 1 0 0 0

0 1 0 0 1

1 1 0 1 1

1 1 0 0 0

1 1 0 0 1

0 0 1 0 0

0 0 1 0 1

1 1 1 0 0

1 1 1 0 1

1 0 1 0 0

1 0 1 0 1

























which while hard to describe in words is easy to calculate. Now w describes 12 out

of 32 possible configurations for {x1,x2,x3,x4,x5}.
An edge should be drawn from w to each neighbor of vi and each neighbor of v j.

This new vertex w contains all the information from vi and v j, and so we can delete

242 12 Algorithms for Solving Polynomial Systems

vi and v j after w is finished being created. But w contains much more information

that vi and v j did collectively, and one expects much agreeing propagation to occur

afterward.

In our example, Mw now has 12 possibilities, but vi and v j had 5 each. This means

that one would have anticipated 25 ways to combine the data naı̈vely. The gain from

gluing is the removal of those 13 spurious configurations. The best case is that the

number of rows in Mw is the maximum of the number of rows in Mi and M j. The

worst case is the product of Mi and M j.

Thus, to avoid using too much memory, one must glue rarely, and particularly

vertices with short lists.

12.10.6 Splitting

In the Guess-and-Determine paradigm (see Section 11.7 on Page 206) one simply

picks some variables (perhaps g of them) and runs the system once for each of the

possible 2g guesses of the values of those variables. What is done here is more

general.

One picks a vertex and splits its list or matrix in half, taking half of the

strings/rows. Then let the algorithm continue. Perhaps it terminates with a solu-

tion. If it terminates with no solution, then restore the state at the moment of the

guess, and repeat with the other half of the strings/rows. Clearly, guessing a variable

is merely a special case of this.

If instead of terminating with a solution or no solutions, we might end up with

getting stuck with no more argeeing/gluing operations possible. Then we must make

another guess. If a contradiction occurs (i.e. no solution is found) then we should

undo the most recent splitting first. This makes a search-tree.

This idea is essentially identical to the Davis-Putnam [92] method of back-

tracking, described in Section 14.3 on Page 269, but more general.

12.10.7 Summary

Therefore, one can see that this is a very novel and interesting way of solving

systems of equations. It requires that each equation contain only a small fraction

of the possible variables, but this could easily occur in practice. There are many

more details in the two papers which we will not describe here. In any case, this is a

very new and very different approach, and it may turn out to be, in future decades,

the principle method for solving systems in practice. Alternatively, it might not be

useful at all. No one can predict the future.

Also, the methods presented in Section 12.8 on Page 228 would seem to be an

excellent pre-processor for the Raddum-Semaev method.

12.12 Homotopy Approach 243

12.11 The Zhuang-Zi Algorithm

Another algorithm for solving polynomial systems of equations over finite fields

is called the Zhuang-Zi algorithm, and was first proposed by Ding, et al, in 2006.

See [95] and [96]. In this case, one lifts the problem of solving a set of multivariate

polynomial equations over a small finite field to solving a set of single variable

equations over an extension field. It is related to the Berlekamp-Massey algorithm

[225].

This algorithm is also mentioned in [97, Ch. 7.6]. We are not aware of any uses

of the algorithm other than by its authors, but the algorithm is extremely new, and

this might change in future years.

12.12 Homotopy Approach

A notable class of algorithms are the homotopy methods. They have not, to the

author’s knowledge, been used in a cryptographic problem at the time of the writing

of this text (late 2007). But, perhaps this is a new research opportunity.

The very classic example of a homotopy function is that function which slowly

changes a coffee cup into a donut. (The reader, if unfamiliar with this, should ask

any topologist). Here, we present how the algorithm works over R variables.

Consider a polynomial system over the reals, g1(x1, . . . ,xn), g2(x1, . . . ,xn), . . . ,

gm(x1, . . . ,xn), that is difficult to solve. Imagine we have some f1(x1, . . . ,xn),
f2(x1, . . . ,xn), . . . , fm(x1, . . . ,xn), that we do know how to solve—usually because

we know all the solutions to start. For example, each f is univariate, or something

of this sort. Then define

hi(x1, . . . ,xn) = αgi(x1, . . . ,xn)+(1−α) fi(x1, . . . ,xn)

Since the f ’s can be solved, then the h’s can be solved when α is zero. Since

each hi is continuous, (in fact it is smooth), an infinitesimal variation in α only

moves the roots infinitesimally. Therefore, a series of α’s, going from 0 to 1, each

very slightly different from the one before it, will produce a series of systems of

equations, whose roots vary only slightly. Furthermore, each root of one system

is a “good starting guess” for a multi-dimensional Newton’s Method approach or

Gradient Descent approach on the next.

The classical example of this would be the g’s being a perturbed or slightly mod-

ified quadratic form, and the f ’s being a diagonal quadratic form, i.e. x2
1 = 1, x2

2 = 1,

. . . so that the 2n roots initially are of the form xi =±1.

244 12 Algorithms for Solving Polynomial Systems

Applicability

It should be noted that while GF(2), the algebraic closure of GF(2), is infinite,

clearly GF(2) is not. Therefore, it is hard to imagine precisely what α would be in

our finite field case. Also, note that finite fields cannot be ordered so it is unclear

what a “sufficiently small” change would be for α .

Chapter 13

Converting MQ to CNF-SAT

13.1 Summary

The computational hardness of solving large systems of sparse and low-degree

multivariate equations is a necessary condition for the security of most modern sym-

metric cryptographic schemes. Notably, most cryptosystems can be implemented

with relatively inexpensive hardware, and thus have moderatley low gate counts,

resulting in a sparse system of equations, which in turn renders such attacks feasi-

ble. Keeloq, described in the first part of this book, is an excellent example of this.

On one hand, numerous recent papers on the XL algorithm and more sophisticated

Gröbner-bases techniques [82, 81, 109, 110] demonstrate that systems of equations

are efficiently solvable when they are sufficiently overdetermined or have a hidden

internal algebraic structure that implies the existence of some useful algebraic rela-

tions.

On the other hand, most of this work, as well as most successful algebraic attacks,

involves dense-oriented, not sparse-oriented algorithms, at least until linearization

by XL or a similar algorithm. The natural sparsity, arising from the low gate-count,

is thus wasted during the polynomial stage, even if it is taken advantage of in the

linear algebra stage by the Block Wiedemann Algorithm or Lanczos’s Algorithm .

See also Appendix D on Page 323. No polynomial-system-solving algorithm we are

aware of except the very recently published methods of Raddum and Semaev [132],

demonstrates that a significant benefit is obtained from the extreme sparsity of some

systems of equations.

In this chapter, we study methods for efficiently converting GF(2) systems

of multivariate polynomial equations into a conjunctive normal form satisfiability

(CNF-SAT) problem, for which excellent heuristic algorithms have been developed

in recent years. Please note that much of this information can be found in the pa-

per by the author, Chris Jefferson, and Nicolas Courtois [33], which also has some

preliminary experiments.

The sparsity of a system of equations, denoted β , is the ratio of coefficients that

are non-zero to the total number of possible coefficients. For example, in a quadratic

© Springer Science + Business Media, LLC 2009

G.V. Bard, Algebraic Cryptanalysis, DOI: 10.1007/978-0-387-88757-9_13 245

246 13 Converting MQ to CNF-SAT

system of m equations in n unknowns over GF(2), this would be

β =
κ

m
((

n
2

)
+
(

n
1

)
+
(

n
0

))

where κ is the number of non-zero coefficients in the system, sometimes called the

“content” of the system of equations.

A direct application of this method gives very efficient results: we find that sparse

multivariate quadratic systems (especially if over-defined) can be solved much faster

than by exhaustive search if β ≤ 1/100. In particular, our method requires no ad-

ditional memory beyond that required to store the problem, and so often terminates

with an answer for problems that cause MAGMA [2] and SINGULAR [9] to crash.

On the other hand, if MAGMA or SINGULAR does not crash, then they tend to be

faster than our method, but this case includes only the smallest sample problems.

Specific details of running times are subject to change from year to year. There-

fore, it is not wise to include them in a book, and therefore, we recommend the

reader who is interested in precise running times to look at papers on the topic in

the published literature. For the running times that were used to write this chapter,

see [33]. However, we have retained the experiments that are used to justify our

model (the Gibrat distribution) for the running-time, and for modeling the effects of

the cutting number (a parameter) and preprocessing.

13.2 Introduction

It is well known that the problem of solving a multivariate simultaneous system

of quadratic equations over GF(2) (the MQ problem) is NP-hard (See Section 11.5).

Another NP-hard problem is finding a satisfying assignment for a logical expression

in several variables (the SAT problem) [148]. Inspired by the possibility that either

could be an efficient tool for the solution of the other, since all NP-Complete prob-

lems are polynomially equivalent, we began this investigation.

There exist several off-the-shelf SAT-solvers, such as MINISAT [104] [6], which

can solve even relatively large SAT problems on an ordinary PC. We investigate

the use of SAT-solvers as a tool for solving a random MQ problem. In particular,

we find that if the system of equations is sparse or over-defined, then the SAT-

solver technique works faster than brute-force exhaustive search. If the system is

both sparse and over-defined, then the system can be solved quite effectively (see

Section 13.5 on Page 255).

In Section 13.2.1 we describe how this work applies to algebraic cryptanalysis.

We define some notation and terms in Section 13.3, and describe the method of

conversion of MQ problems into CNF-SAT problems in Section 13.4. We review

previous work in Section 13.7.1. Finally, we note possible applications to cubic

systems in Section 13.6. A brief overview of SAT solvers is given in Section 14.

13.3 Notation and Definitions 247

While we take as given the NP-Completeness of these two problems in this chapter,

note it is proven in Section 11.5.

13.2.1 Application to Cryptanalysis

As mentioned earlier, Algebraic Cryptanalysis can be summarized as a two-step

process. First, given a cipher system, one converts it into a system of equations.

Second, the system of equations is solved to retrieve either a key or a plaintext.

Furthermore, note that all systems of equations over finite fields can be written as

polynomial systems, as a special case of Theorem 72 on Page 190.

As pointed out by Courtois and Pieprzyk [81], this system of equations will

be sparse, since efficient implementations of real-world systems require low gate

counts. In practice, the systems are very sparse—the system used to break six

rounds of DES in [76] has 2900 variables, 3056 equations and 4331 monomials

appear somewhere in the system. There would be
(

2900
2

)
+
(

2900
1

)
= 4,206,450 pos-

sible monomials, and those authors report less than 15 monomials per equation, or

β = 3.57×10−6.

It is also known that any system of any degree can be written as a degree 2

system. This is done by using the following step, repeatedly:

{m = wxyz}⇒ {a = wx;b = yz;m = ab}

Note: this process is described in detail in Section 11.4 on Page 192.

Finally, it is usually the case that one can write additional equations by assuming

that many plaintext-ciphertext pairs are available. While the number of pairs is not

literally unbounded, as many stream ciphers have a limit of 240 bits before a new

key is required, generally one has an over-abundance of equations. Therefore, we

include in this study only systems where the number of equations is greater than or

equal to the number of unknowns.

13.3 Notation and Definitions

An instance of the MQ problem is a set of equations

f1(x1, . . . ,xn) = y1, f2(x1, . . . ,xn) = y2, . . . , fm(x1, . . . ,xn) = ym

where each fi is a second degree polynomial over GF(2). By adjusting the constant

term of each polynomial, it becomes sufficient to consider only those problems with

y j = 0 for all j. Note that n is the number of variables and m is the number equations.

248 13 Converting MQ to CNF-SAT

If we define γ = m/n or γn = m, then γ = 1 will imply an exactly defined system,

γ > 1 an over-defined system and γ < 1 an under-defined system. We will not con-

sider under-defined systems here. The value of γ will be called “the over-definition”

of a system, and it can also be denoted “c”. Let M denote the number of possi-

ble monomials, including the constant monomial. Since we consider only quadratic

polynomials (except for Section 13.6 on Page 258 on cubics),

M =

(
n

2

)

+

(
n

1

)

+1

The system will be generated by flipping a weighted coin for each of the M

coefficients for each equation. The value β ∈ (0,1] will be called the sparsity, and

is the probability that a randomly selected coefficient is non-zero (equal to one). If

β ≪ 1/2 the system is considered sparse.

An instance of the Conjunctive Normal Form SAT or CNF-SAT problem is a set

of clauses. Each clause is a large disjunction (OR-gate) of several variables, which

can appear negated or not negated. If a set of values for all n variables makes every

clause evaluate to true, then it is said to be a satisfying assignment. In this way, the

set of clauses can be thought of as one long logical expression, namely a conjunction

(AND-gate) of all the clauses.

13.4 Converting MQ to SAT

13.4.1 The Conversion

The conversion proceeds by three major steps. First, some preprocessing might

be performed to make the system more amenable to this conversion (more detail

will follow). Next, the system of polynomials will be converted to a (larger) linear

system and a set of CNF clauses that render each monomial equivalent to a variable

in that linear system. Lastly, the linear system will be converted to an equivalent set

of clauses.

13.4.1.1 Minor Technicality

The CNF form does not have any constants. Adding the clause consisting of (T),
or equivalently (T ∨ T ∨ ·· · ∨ T), would require the variable T to be true in any

satisfying solution, since all clauses must be true in any satisfying solution. Once

this is done, the variable T will serve the place of the constant 1, and if needed, the

variable T̄ will serve the place of the constant 0. Otherwise constants are unavailable

in CNF.

13.4 Converting MQ to SAT 249

Step One: From a Polynomial System to a Linear System

Based on the above technicality, we can consider the constant term 1 to be a

variable. After that, every polynomial is now a sum of linear and higher degree

terms. Those terms of quadratic and higher degree will be handled as follows.

The logical expression

(w∨ ā)(x∨ ā)(y∨ ā)(z∨ ā)(a∨ w̄∨ x̄∨ ȳ∨ z̄)

is tautologically equivalent to a ⇐⇒ (w∧x∧y∧z), or the GF(2) equation a = wxyz.

Similar expressions exist for equations of the form a = w1w2 · · ·wr, for any r > 1.

Therefore, for each monomial of degree d > 1 that appears in the system of

equations, we shall introduce one dummy variable. One can see that d + 1 clauses

are required, and the total length of those clauses is 3d +1.

Obviously, if a monomial appears more than once, there is no need to encode it

twice, but instead, it should be replaced by its previously defined dummy variable.

On the other hand, in a large system, particularly an over-defined one, it is likely

that every possible monomial appears at least once in some equation in the system.

Therefore we will assume this is the case, but in extremely sparse systems that are

not very over-defined, this is pessimistic, particularly for high degree systems.

At the risk of laboring over a minor point, note that in the production code we

have a check-list, and never encode the same monomial twice, and only encode a

monomial once it has appeared in the system. But, this algorithm can be encoded

into LOGSPACE by simply enumerating all the possible monomials at the start, ex-

actly once, and then continuing with the next step. We should note that, for a fixed

degree, there are polynomially many monomials. If the degree is allowed to change,

there are exponentially many.

Step Two: From a Linear System to a

Conjunctive Normal Form Expression

Each polynomial is now a sum of variables, or equivalently a logical-XOR. Un-

fortunately, long XORs are known to be hard problems for SAT solvers [87]. In

particular, the sum (a+b+ c+d) = 0 is equivalent to

(a∨b∨ c∨d)(a∨b∨ c̄∨ d̄)(a∨ b̄∨ c∨ d̄)(a∨ b̄∨ c̄∨d) (13.1)

(ā∨b∨ c∨ d̄)(ā∨b∨ c̄∨d)(ā∨ b̄∨ c∨d)(ā∨ b̄∨ c̄∨ d̄)

which is to say, all arrangements of the four variables, with 0, 2, or 4 negations, or

all even numbers less than or equal to four. For a sum of length ℓ, where 2⌊ℓ/2⌋= j,

this requires
(

ℓ

0

)

+

(
ℓ

2

)

+

(
ℓ

4

)

+ · · ·+
(

ℓ

j

)

= 2ℓ−1

250 13 Converting MQ to CNF-SAT

clauses, which is exponential compared to ℓ.

To remedy this, cut each sum into subsums of length c. (We will later call c the

cutting number). For example, the equation x1 + x2 + · · ·+ xℓ = 0 is clearly equiva-

lent to

x1 + x2 + x3 + y1 = 0

y1 + x6 + x7 + y2 = 0

...
...

...

yi + x4i+2 + x4i+3 + yi+1 = 0

...
...

...

yh + xℓ−2 + xℓ−1 + xℓ = 0

if ℓ ≡ 2(mod c). If ℓ 6≡ 2(mod c) then the final sum is shorter, and this is more

efficient because a sum or XOR of shorter length requires fewer clauses. Therefore

it is safe to be pessimistic and assume all equations are of length ℓ≡ 2(mod c). In

either case, one can calculate h = ⌈ℓ/c⌉−2. Thus there will be h+1 subsums, and

each will require 2c−1 clauses of length c each, via Equation 13.2 on Page 249.

13.4.2 Measures of Difficulty

Three common measures of the size of a CNF-SAT problem are the number

of clauses, the total length of all the clauses, and the number of variables. It is

not known which of these is a better model of the difficulty of a CNF expression.

Initially we have n variables, and 0 clauses of total length 0.

Step 1 is preprocessing which will be described later. For a quadratic system of

polynomials, the cost for each unique monomial in Step 2 of the conversion is 1

dummy variable, 3 clauses, of total length 7. This needs to be done for all possible

M−n−1 quadratic monomials. The constant monomial requires 1 dummy variable,

and 1 clause of length 1.

The cost in Step 3 requires an estimate of the expected value of the length of

each equation. Since there are M possible coefficients, then this is equal to Mβ . For

the moment, assume the cutting number is c = 4. There will be (in expected value)

Mβ/2− 1 subsums per equation, requiring Mβ/2− 2 dummy variables, 4Mβ − 8

clauses and total length 16Mβ −32.

This is a total of

• Variables: n+1+(M−n−1)(1)+m(Mβ/2−1).
• Clauses: 0+1+(M−n−1)(3)+m(4Mβ −8).
• Length: 0+1+(M−n−1)(7)+m(16Mβ −32).

13.4 Converting MQ to SAT 251

Substituting m = γn and M = n2/2+n/2+1, one obtains

• Variables: ∼ n2/2+ γn3β/4.

• Clauses: ∼ (3/2)n2 +2γn3β .

• Length: ∼ (7/2)n2 +8γn3β .

Furthermore, so long as β > 1/m then the first term of each of those expressions

can be discarded. If β < 1/m then (n + 1)/(2γ) monomials are found in each row.

So long as γ is not too large, this is quite possible, but rather sparse indeed, and so

we do not consider this case further. These expressions are summarized, for several

values of cutting number, in Table 13.1 on Page 251

Table 13.1 CNF Expression Difficulty Measures for Quadratic Systems, by Cutting

Number
Cutting Number Variables Clauses Tot. Length Avg. Length

Cut by 3 ∼ γn3β/2 ∼ 2γn3β ∼ 6γn3β 3

Cut by 4 ∼ γn3β/4 ∼ 2γn3β ∼ 8γn3β 4

Cut by 5 ∼ γn3β/6 ∼ (8/3)γn3β ∼ (40/3)γn3β 5

Cut by 6 ∼ γn3β/8 ∼ 4γn3β ∼ 24γn3β 6

Cut by 7 ∼ γn3β/10 ∼ (6.4)γn3β ∼ 44.8γn3β 7

Cut by 8 ∼ γn3β/12 ∼ (32/3)γn3β ∼ (256/3)γn3β 8

13.4.2.1 Bounds on SAT

The worse-case estimates for solving SAT on a CNF problem are commonly

given in terms of the number of clauses K, the number of variables n, and the total

length of all the clauses L. Another commonly used metric is the average length

of a clause L/K. Currently, the following bounds are known. From the number

of clauses, the bound is O(1.27202K) [112]. From the total length, the bound is

O(1.073997L) [137].

The situation for n, the number of variables, is a bit messier. If a conjunctive

normal form problem can be written so that the longest clause is length k, then we

say the problem is a k-CNF-SAT problem. All problems can be written in 3-CNF-

SAT form, but this involves the introduction of many additional variables. That, in

turn, would affect the n.

If the problem can be written in 4-CNF-SAT or 5-CNF-SAT affects the worse-

case running time. For 3-CNF-SAT it is O(20.410n) given by [138]. For 4-CNF-SAT

it is O(20.562n) given by [188]. Also in [188] are worse-case times for 5-CNF-SAT

at O(20.650n) and 6-CNF-SAT at O(20.711n).
A fascinating effect occurs if a solution is known to exist and is unique; this is

often the case with cryptanalysis [188]. In fact, this effect occurs even if there are

multiple solutions, but they are very far apart in Hamming Distance. In the case of

252 13 Converting MQ to CNF-SAT

3-CNF-SAT, the worse-case moves to O(20.386n) and for 4-CNF-SAT it moves to

O(20.554n), both given in [188]. This is not a huge change for 4-CNF-SAT, but for

3-CNF-SAT it is very significant.

Last but not least, recall that 2-CNF-SAT is polynomial time (see Section 14.2.2

on Page 265).

13.4.3 Preprocessing

It is clear from the above expressions that n is the crucial variable in determining

the number of dummy variables, clauses, and total lengths of clauses. With this in

mind, we devised the following preprocessing scheme, based on the idea of Gaus-

sian Elimination. It is executed as Step 1 of the conversion. For any specific poly-

nomial one can reorder the terms as follows

xa0
= xa1

+ xa2
+ · · ·+ xan +(quadratic terms)+(+1)

where the +1 term is optional, and ai ∈ {1, . . . ,n}. This is, in a sense, a re-definition

of xa0
, and so we add this equation to every polynomial in the system where xa0

appears (except the first which is now serving as its definition). Afterword, xa0

will appear nowhere in the system of equations, except in its definition, effectively

eliminating it as a variable. Since SAT-solvers tend to choose the most-frequently-

appearing variables when deciding which cases to branch on (except in a constant

fraction of cases when they select randomly, e.g. 1% of the time), xa0
will not be cal-

culated until all other variables have been set. See also, Section 12.5 on Page 219.

If there are t equations of short length in the system, then, after preprocessing,

these t variables only appear in their own definitions (not even the definitions of each

other), and so far as the main system is concerned, there are now n− t variables. In

practice, the effect of this is slightly less than a doubling of performance (see [33]).

We only consider a polynomial for elimination if it is of length 4 or shorter (called

“light massage”) or length 10 or shorter (called “deep massage”). The reason for the

length limit is to minimize the increase of β that occurs as follows.

When Gaussian Elimination is performed on an m× n sparse GF(2) matrix A,

in the ith iteration, the β in the region Ai+1,i+1 . . .Am,n will tend to be larger (a

higher fraction of ones) than that of Ai,i . . .Am,n in the previous iteration (See [30] or

[93, Ch. 7]). Even in “Naı̈ve Sparse Gaussian Elimination”, when the lowest weight

row is selected for pivoting at each step, this tends to occur (see Appendix D on

Page 323). By adding two rows, the new row will have as many ones as the sum of

the weights of the two original rows, minus any accidental cancellations. Therefore,

by only utilizing low weight rows, one can mostly mitigate the increase in β . See

the experiments in Section 13.5.4 on Page 257, and Table 13.2 on Page 259, for the

effect.

13.4 Converting MQ to SAT 253

The Reverse Massage

Interestingly, when cryptanalyzing Bivium, the authors of [176] did the reverse

of this. When massaging, we sacrifice sparsity in the sense of making the equations

longer, but we eliminate variables. What they did (see Section 5.1.3 on Page 64,

where we give details) accomplished the reverse. It added variables, but shortened

equations, thus increasing sparsity.

13.4.4 Fixing Variables in Advance

Since cryptographic keys are generated uniformly at random, it makes sense to

generate the xi’s as fair coins. But suppose g of these are directly revealed to the

SAT solver by including the short equations x1 = 1,x2 = 0, . . . ,xg = 1, and that a

satisfying solution is found in time tSAT . A real world adversary would not have these

g values of course, and would have to guess them, requiring time at most 2gtSAT , or

half that value for expected time. As in algebraic cryptanalysis [82] it turns out

that g = 0 is not the optimal solution. In our experiments on actual cryptographic

systems, we manually tried all g within the neighborhood of values which produced

tSAT between 1 second and 1 hour, to locate the optimum (the value of g which

yielded the lowest running time).

Since exhaustive search requires checking 2n−1 possible values of x1, . . . ,xn on

average, then this method is faster than brute force if and only if tver, the time re-

quired to check one potential key, satisfies

tver > tSAT 2−(n−g)

This method is useful for the cryptanalysis of a specific system, e.g. DES [76].

In addition to having fewer variables, note that m/n > m/(n−g), and so the “over-

definition” or γ will increase, yielding further benefit to fixing variables. This is

sometimes called the “guess-and-determine” method.

However, for random systems of quadratic equations, fixing variables g and sub-

stituting their values results in another system, which is an example of a random

system with m equations and n−g unknowns, but with slightly different sparsity.

Therefore, for random systems of equations, there is no need to do this, but for

any particular real problem, it should be very useful. in fact, the author wishes to

strongly encourage those who attack actual cipher systems to attempt to fix vari-

ables. This was found to be effective in practice, and is described in Section 11.7 on

Page 206. For more on this topic, see Section 12.4.4 on Page 217 and Section 11.7.2

on Page 207.

254 13 Converting MQ to CNF-SAT

13.4.4.1 Parallelization of SAT

Suppose g bits are to be fixed, and 2p processors (for some p) are available, with

p < g. Then of the 2g possible values of the g fixed bits, each processor could be as-

signed 2g−p of them. After that, no communication between processors is required,

nor can processors block each other. Therefore parallelization is very efficient. If

interprocess communication is possible, then the “learned clauses” (explained in

Section 14.5.1 on Page 275) can be propagated to all running SAT-solvers.

In the event that thousands of volunteers could be found, as in the DES challenge

of 1997, or DESCHALL Project [88], then the low communications overhead would

be very important.

13.4.5 SAT-Solver Used

The solver used in this chapter is MINISAT [6], a minimalist open-source SAT

solver. In fact, MINISAT has won a series of awards including the three industrial

categories in the SAT 2005 competition and first place in SAT-Race 2006. MINISAT

is based on Chaff, but the algorithms involved have been optimized and carefully

implemented. Also, Mini-SAT has carefully optimized variants of the variable order

heuristics and learned clause removal heuristics.

13.4.5.1 Note About Randomness

The program MINISAT is a randomized algorithm in the sense of using proba-

bilistic reasoning. At first the following phenomenon was observed. If one randomly

shuffles the clauses of a CNF file, the performance of the SAT-solver changes dra-

matically. However, running the same input file several times yields the same run-

ning time, to within 1%, each time. Obviously, this “locked” randomness maybe a

lucky choice, or an unlucky one. Since the actual performance of MINISAT on these

problems is log-normal (see Section 13.5.3 on Page 256), the consequences of an

unlucky choice are drastic. Therefore, one (in testing) should generate 20–50 CNF

files of the same system, each perhaps different by fixing a different subset of g of

the original n variables, or perhaps by reordering the clauses in a random shuffle.

The latter is very cheap computationally, but the former is better, as casual experi-

mentation has shown there are definitely “lucky” and “unlucky” choices of variables

to fix. More precisely, the running time is not dependent on g alone, but also on the

specific g out of n monomials chosen to be fixed. The expected value of the running

time in practice can then be calculated as the mean of the running times of the 20–50

samples, each with a distinct random choice of fixed variables.

The author has paper with Robert Lewis and Kenneth Wong [231] which iden-

tifies a method based on graph theory (similar to Section 12.8 on Page 228) that

offers an excellent way to choose precisely which variables should be fixed.

13.5 Experimental Results 255

Error in Dissertation

At first, this phenomenon was thought to be caused by the random number gen-

erator inside the SAT-solver MINISAT being seeded by a hash of the input file.

Therefore, surely shuffling the clauses would produce a new hash. This is what the

author stated in his dissertation [31, Ch. 3.4.5.1]. However, this turns out not to be

the case. Instead, when making assumptions and back-tracking, see Section 14.3 on

Page 269, the MINISAT SAT-solver will be influenced by the order of the clauses

in the file in determining which branches of the tree to take [174]. Therefore, shuf-

fling the clauses randomly over several runs continues to be necessary for drawing

statistics, and sufficient for removing the luck factor, but the underlying reason for

this action is slightly different.

13.5 Experimental Results

13.5.1 The Source of the Equations

In cryptanalysis, we always know that a message was indeed sent, and so we

know at least one solution exists to our equations. But, in generating a random sys-

tem of equations, if over-defined, we must take care, because many systems of equa-

tions will have no solution. Therefore we used the following technique.

We started with a random system of m polynomial equations in n variables. Each

coefficient was set by a weighted coin, but independently and identically distributed.

By moving all the terms to the same side of the equal sign, one can easily see this

as m functions on n variables, or a map F : GF(2)n→GF(2)m. Then we generated

a random vector x in GF(2)n by flipping fair coins. It is easy to calculate F(x) = y.

Finally we gave our tools the job of finding x given only y and F .

13.5.2 Note About the Variance

In general, the running times are highly variable. We propose that the log-normal

distribution, sometimes called Gibrat’s distribution, is a reasonable model of the

running time for a given system. This implies merely that the running time t is

distributed as ex, where x is some random variable with the normal (Gaussian) dis-

tribution. In practice, however, this presents an experimental design challenge.

The distributions of the running times vary so wildly that, at absolute minimum,

50 experiments must be performed to get an estimate of the expectation. Also, minor

improvements, such as parameters of massaging, are only statistically significant

after hundreds of repeated trials—which makes careful tuning of the massaging

process impossible.

256 13 Converting MQ to CNF-SAT

13.5.3 The Log-Normal Distribution of Running Times

Examine Figures 13.5.3 and 13.5.3 on Page 257, which plot the probability distri-

bution of the running time, and its natural logarithm, respectively. One can observe

that the second figure “looks normal”, in the sense of being a bell curve that has had

its right end truncated. For comparison, Figure 13.5.3 does not look like much of a

distribution at all.

The kurtosis of a random variable is a measure of “how close to normal” it is, and

takes values in [−2,∞). The normal distribution has a kurtosis of zero, and positive

kurtosis implies a leptokurtic distribution (one with values near the mean being

more common than in the Gaussian) and negative kurtosis implies a platykurtic

distribution (one with values near the mean less common than the Gaussian). The

plot of running times suggests an exponential of some kind, and so upon taking

the natural logarithm of each point, a set of values with very low kurtosis (0.07)
was found. The plot of the logarithm is close to a bell curve, and is from 442 data

points, 15 of which were longer than the manually set 1800 sec time out, and 427 of

which were plotted. Since loge(1800) ≈ 7.496, this explains why the graph seems

truncated at loge t > 7.50.

Fig. 13.1 The Distribution of Running Times, Experiment 1

A common (minimal) criteria for accepting statistical results as valid is that the

standard deviation must never exceed the mean in a strictly-positive variable. Natu-

rally, running times are strictly positive. When we look at the average and standard

deviations of the running times themselves, we see that the standard deviation quite

often exceeds the average, or is extremely close to it otherwise. (See Table 13.2

on Page 259, “Naı̈ve Average” and “Naı̈ve Standard Deviation”) Therefore, these

measurements should be rejected in favor of the mean and standard deviation of the

logarithm of the running time.

13.5 Experimental Results 257

Fig. 13.2 The Distribution of the Logarithm of Running Times, Experiment 1

When looking at “Average(ln)” and “StDev(ln)”, one can see that the standard

deviation is always much less than the average. This gives us confidence that one

should estimate the logarithm of the running time as a normal variable, which means

that the running time is governed by the Gibrat distribution.

To further test the Gibrat-distribution hypothesis, let us look at the Kurtosis. Nor-

mally, a Kurtosis of ±1 is considered “somewhat” normal, with ±0.5 being “rea-

sonably normal”. We have 15 experiments. The kurtoses in 9 of the 15 experiments

of the running time itself were outside of the ±1 window, and only three of the 15

experiments were within the ±0.5 window. (See “Naı̈ve Kurtosis” in Table 13.2 on

Page 259). On the other hand, taking the logarithm of the running times, only two

experiments failed to be within ±1, and in fact 9 of them are within ±0.5.

Also, it should be noted that since the Kurtosis is the fourth moment of the prob-

ability distribution, it is very hard to measure from experiment.

13.5.4 The Optimal Cutting Number

See Table 13.2 on Page 259. The system solved here is identical to that in the

previous experiment, except different cutting numbers and massaging numbers were

used during the conversion. Also, only 50 experiments were run. The result shows

that deep massaging is a worthwhile step, as it cuts the running time by half and

takes only a few seconds. Furthermore, it shows cutting by six is optimal, at least

for this system. Note, cutting by 8 would produce extremely large files (around 11

Mb)—those for cutting by 7 were already 5.66 Mb. Both in this case, and in casual

experiments with other systems of equations, the running time does not depend too

258 13 Converting MQ to CNF-SAT

much on cutting number (also visible in Table 13.2 on Page 259), and that cutting

by six remains efficient.

The massage ratio is the quotient of the running time with massaging to that of

the running time without. As one can see, the effects of a deep massage were slightly

less than doubling the speed of the system. A light massage was even detrimental

at times. This is because the requirement that a polynomial only be length 4 is

quite severe (very few polynomials are that short). Therefore, there is only a small

reduction in the number of variables, which might not be sufficient to offset the

increase in β .

13.6 Cubic Systems

While no experiments were performed on random cubic systems, the cryptanaly-

sis of the first 6-rounds of the Data Encryption Standard by Courtois and Bard [76]

was carried out using the method in this chapter. It was much faster than brute force;

however, it was necessary to perform a great deal of human-powered preprocessing.

See that paper for details.

In particular, the conversion for cubics proceeds identically to quadratics, with

two exceptions. First, the number of possible monomials is much higher. Second,

below, is the question if all possible monomials appear.

13.6.1 Do All Possible Monomials Appear?

Intuition implies that the assumption that every monomial is probably present

might not be true. However, degree does not, in fact, affect the probability that a

given monomial is present somewhere in the system, for a fixed β . The probability

any particular monomial is present in any particular equation is β . Since there are

m equations, the probability that a monomial is present anywhere is 1− (1−β)m.

Degree has no role to play in that equation. Since this is obviously equal to the

expected fraction of monomials missing, it is interesting to compute what β would

need to be in order for a fraction r or less of the expected monomials to be present:

(1− (1−β)m)≤ r

Since this would be a small β (for r < 1/2) we can approximate (1−β)m ≈ 1−mβ ,

or mβ ≤ r.

It would not be worth the overhead to keep a checklist unless perhaps 3/4 or more

of the monomials never actually appear. So it is interesting to discover what β , in a

cubic and quadratic example, would result in that level of monomial absences (i.e.

r < 1/4).

13.6 Cubic Systems 259

Table 13.2 Running Time Statistics in Seconds

Cut by 3 Cut by 4 Cut by 5 Cut by 6 Cut by 7

No Massaging

Naı̈ve Average 393.94 279.71 179.66 253.15 340.66

Naı̈ve StDev 433.13 287.33 182.18 283.09 361.04

µ/σ 1.10 1.03 1.01 1.12 1.06

Naı̈ve Kurtosis 0.93 5.12 0.79 1.16 2.47

Average(ln) 5.11 4.96 4.55 4.72 5.2

StDev(ln) 1.63 1.46 1.35 1.51 1.27

µ/σ 0.32 0.29 0.30 0.32 0.24

Kurtosis(ln) 0.51 0.8 0.43 -0.5 -0.32

Light Massaging

Naı̈ve Average 413.74 181.86 269.59 217.54 259.73

Naı̈ve StDev 439.71 160.23 301.48 295.88 237.52

µ/σ 1.06 0.88 1.12 1.36 0.91

Naı̈ve Kurtosis 0.04 0.08 3.68 6.85 0.01

Massage Ratio 1.05 0.65 1.5 0.86 0.76

Average(ln) 5.3 4.64 4.84 4.52 4.87

StDev(ln) 1.39 1.29 1.5 1.47 1.5

µ/σ 0.26 0.28 0.31 0.33 0.31

Kurtosis(ln) -0.38 0.07 0.09 -0.14 0.52

Deep Massaging

Naı̈ve Average 280.22 198.15 204.48 144.94 185.44

Naı̈ve StDev 363.64 292.21 210.53 150.88 49.53

µ/σ 1.30 1.47 1.03 1.04 0.27

Naı̈ve Kurtosis 5.67 9.24 3.74 0.62 4.69

Massage Ratio 0.71 0.71 1.14 0.57 0.54

Average(ln) 4.82 4.34 4.54 4.07 4.33

µ/σ 0.31 0.39 0.36 0.43 0.36

StDev(ln) 1.48 1.68 1.63 1.73 1.54

Kurtosis(ln) 1.1 2.41 0.75 -0.06 -0.23

Cubic Example Consider n = 128, m = 128γ , a number of monomials ≈
1283/6 ≈ 349525. This would require β ≤ 1/512γ . This means the average

length of an equation would be ≤ 683/γ . This could easily occur if the system is

not highly overdefined, i.e. γ ≈ 1. It is also easy to imagine systems where this

would not occur.

Quadratic Example n = 128, m = 128γ , number of monomials 1282/2 ≈ 8192.

This would require β ≤ 1/512γ . This means the average length of an equation

260 13 Converting MQ to CNF-SAT

would be≤ 16/γ . Therefore, the system would have to be rather sparse with very

short equations in order for this to happen.

13.6.2 Measures of Efficiency

There are
(

n
3

)
∼ n3/6 cubic monomials possible, each requiring 1 dummy vari-

able, 4 clauses of total length 10. There are as before
(

n
2

)
∼ n2/2 quadratic monomi-

als possible, each requiring 1 dummy variable, 3 clauses of total length 7. The total

number of monomials possible is thus

M =

(
n

3

)

+

(
n

2

)

+

(
n

1

)

+

(
n

0

)

∼ n3/6

The expected length of any polynomial is βM ∼ βn3/6. Taking cutting by four

as an example, this would require ∼ βn3/12 dummy variables, and ∼ (2/3)βn3

clauses of total length ∼ (8/3)βn3, for each of the m equations. Therefore, the cost

of converting the monomials is negligible compared to that of representing the sums,

as before.

Table 13.3 CNF Expression Difficulty Measures for Cubic Systems, by Cutting

Number
Cutting Number Variables Clauses Tot. Length Avg. Length

Cut by 3 ∼ γn4β/6 ∼ (2/3)γn4β ∼ 2γn4β 3

Cut by 4 ∼ γn4β/12 ∼ (2/3)γn4β ∼ (8/3)γn4β 4

Cut by 5 ∼ γn4β/18 ∼ (8/9)γn4β ∼ (40/9)γn4β 5

Cut by 6 ∼ γn4β/24 ∼ (4/3)γn4β ∼ 8γn4β 6

Cut by 7 ∼ γn4β/30 ∼ (32/15)γn4β ∼ (224/15)γn4β 7

Cut by 8 ∼ γn4β/36 ∼ (32/9)γn4β ∼ (256/9)γn4β 8

13.7 Further Reading

13.7.1 Previous Work

The exploration of SAT-solver enabled cryptanalysis is often said to have begun

with Massacci and Marraro [172, 171, 173, 135], who attempted cryptanalysis of

DES with the SAT-solvers Tableau, Sato, and Rel-SAT. This was successful to three

rounds. However, this was a head-on approach, encoding cryptographic properties

13.7 Further Reading 261

directly as CNF formulas. A more algebraic approach has recently been published

by Courtois and Bard [76], which breaks six rounds (of sixteen). Fiorini, Martinelli

and Massacci have also explored forging an RSA signature by encoding modular

root finding as a SAT problem in [114]. This was less successful.

The application of SAT-solvers to the cryptanalysis of hash functions, or more

correctly, collision search, began with [143] which showed how to convert hash-

theoretic security objectives into logical formulas. The paper [177], by Mironov

and Zhang, continued the exploration of hash functions via SAT-solvers by finding

collisions in MD4 and MD5.

We believe this is the first successful application of SAT-solvers to solving sys-

tems of equations over finite fields. However, the approach was mentioned in [64],

upon the suggestion of Jacques Stern.

13.7.2 Further Work

Quite a few researchers have used the author’s technique presented in this chap-

ter. Here is a sampling, in no particular order.

• “Algebraic Cryptanalysis of the Data Encryption Standard” by Nicolas Courtois

and Gregory Bard [76], published in the proceedings of the IMA conference on

coding theory and cryptography.

• “Attacking Bivium using SAT Solvers” by Tobias Eibach, Enrico Pilz and Gunnar

Völkel [105], published in the proceedings of SAT’08.

• “Periodic Ciphers with Small Blocks and Cryptanalysis of Keeloq” by Nico-

las Courtois, Gregory Bard, and Andrey Bogdanov [83], published in the Tatra

Mountains Mathematical Publication, the mathematics journal of the Slovak

Academy of Sciences.

• “Secure PRNGs from Specialized Polynomial Maps over any Fq” by Feng-

Hao Liu, Chi-Jen Lu and Bo-Yin Yang [167], published in the proceedings of

PQC’08.

• “Extending SAT-Solvers to Low-Degree Extension Fields of GF(2)” by Gregory

Bard [32], presented at CECC’08.

• “Guess-and-Determine Algebraic Attack on the Self-Shrinking Generator” by

Blandine Debraize and Louis Goubin, published in the proceedings of FSE’08.

• “Analysis of Lightweight Stream Ciphers”, the PhD Dissertation of Simon Fis-

cher [115].

• “Algebraic and Slide Attacks on Keeloq” by Nicolas Courtois, Gregory Bard,

and David Wagner [84], published at FSE’08.

• “Algebraic Attacks on the Crypto-1 Stream Cipher in MiFare Classic and Oyster

Cards”, by Nicolas T. Courtois, Karsten Nohl and Sean O’Neil [85], published

as an IACR e-print.

• “An Algebraic Analysis of Trivium Ciphers based on the Boolean Satisfiabil-

ity Problem”, by Cameron McDonald, Chris Charnes and Josef Pieprzyk [176],

published as an IACR e-print and in the proceedings of BFCA’2008.

262 13 Converting MQ to CNF-SAT

• “Algebraic cryptanalysis of symmetric primitives” by Carlos Cid, Martin Al-

brecht, Daniel Augot, Anne Canteaut, and Ralf-Philipp Weinmann [58], an

ECRYPT technical report.

• “Boolsche Gleichungssysteme, SAT Solver und Stromchi?ren”, the Bachelorar-

beit (Bachelor’s Thesis) of Enrico Pilz [191], from Universität Ulm, Institut für

Theoretische Informatik.

• “Algebraic Cryptanalysis of SMS4”, REU report of Jermey Erickson of Taylor

University [107].

• “Algebraic Techniques in Differential Cryptanalysis” by Martin Albrecht and

Carlos Cid [16].

13.8 Conclusions

The problem of solving a multivariate polynomial system of equations over

GF(2) is important to cryptography. We demonstrate that it is possible to efficiently

covert such a problem into a CNF-SAT problem. Also, the massaging method of

preprocessing has been shown to be useful. On most problems of even intermediate

size, Gröbner-Bases-oriented methods, like MAGMA and SINGULAR, crash due to

a lack of sufficient memory. Our method, on the other hand, in experiments given

in [33] but not here, requires little more memory than that required to store the

problem. In examples where MAGMA and SINGULAR do not crash, these tools are

faster than our methods. However, our method is still much faster than brute force

approximately when β ≤ 1/100.

Chapter 14

How do SAT-Solvers Operate?

The purpose of this chapter is to explain how SAT-solvers operate (at least at the

time of the writing of this book, late 2008). Two major families will be described in

Algorithm [182], culminating in MINISAT, a popular SAT-solver [104] [6]. This

gives insight into Chapter 13 on Page 245 in particular, by highlighting why the

number of variables per clause, number of clauses, and number of variables, are

taken as the three general barometers of difficulty for a particular SAT problem. As

a contrast, we will first describe Walk-SAT, a very different type of solver, to show

how these methods and approaches differ and are similar. At this time, many SAT-

solvers are in use, most of them of the Chaff/MINISATtype. However, that could

someday change, perhaps even soon.

Besides the Chaff family and the Walk-SAT family, many other SAT algorithms

have been proposed in previous years, and also many preprocessing techniques,

none of which will be described below. While the author makes frequent and ex-

tensive use of SAT-solvers, he is not an expert on their internals. The following is

meant to be informative and general, and so many details are omitted.

14.1 The Problem Itself

Given a logical sentence over certain variables, does there exist a set of assign-

ments of true and false to each of those variables so that the entire sentence eval-

uates as true? This question is the “SAT” problem, and is the root of the theory of

NP-Completeness.

The term “logical sentence” in this book refers to an expression composed of

variables, as well as the operators from predicate calculus (AND, OR, NOT, IM-

PLIES, and IFF), arranged according to the grammar of predicate calculus. There

are no universal quantifiers (i.e. ∀), existential quantifiers (i.e. ∃), or any functions.

An example of such a sentence is

this section. The family of SAT-solvers used by the author are based on the Chaff

© Springer Science + Business Media, LLC 2009

263G.V. Bard, Algebraic Cryptanalysis, DOI: 10.1007/978-0-387-88757-9_14

264 14 How do SAT-Solvers Operate?

(D∧B∧A)⇒ (B∨C)

which is satisfied by (for example) setting all the variables to true.

It is a basic fact from digital circuit theory that any logical sentence can be written

as a product of sums (Conjunctive Normal Form or CNF) or as a sum of products

(Disjunctive Normal Form or DNF). These terms refer to the semiring first intro-

duced in Section 6.2 on Page 81, where addition is logical-OR and multiplication is

logical-AND.

Algebraic Normal Form (ANF) is a sum over GF(2), or logical-XORs, each input

of which is a product (logical-AND). Polynomials over GF(2) are thus ANFs, and

we desire to make them CNFs, for use with the SAT-solver.

14.1.1 Conjunctive Normal Form

A logical sentence in CNF is a set of clauses. Each clause is combined into a

large conjunction or AND-gate. Thus the sentence is true if and only if each clause

is true. The clauses are themselves OR-gates, or disjunctions. Each variable in the

clause can appear negated, or not negated.

Product of Sums or Conjunctive Normal Form has been selected as the universal

notation for SAT-solvers for many reasons. One reason is that all predicate calculus

sentences can be written in CNF. Another interesting reason is that some sentences

can be written with two or fewer variables per clause, and others require three vari-

ables at least for some clauses. There does not exist a logical sentence which cannot

be written with the restriction of at most three variables per clause. Solving the SAT

problem on CNF sentences with at most two variables per clause (2-CNF-SAT) is

possible in polynomial time [63, Ch. 34.4]. For CNF sentences with up to three

variables per clause (3-CNF-SAT), SAT is NP-Complete. In fact, SAT itself is the

“mother problem” of NP-Completeness, in the sense that problems are proven to be

NP-Complete by being reduced to SAT.

While one could write any logical sentence in 3-CNF-SAT notation, it is not

required for SAT solvers that the author is aware of. The logical sentence need

merely be in CNF form.

14.2 Solvers like Walk-SAT

In order to explain what the Chaff/Grasp family of SAT-solvers is about, it is

worthwhile to investigate a different family, for contrast. The system described here,

called Walk-SAT, is by Selman, Kautz and Cohen, and was the leading method for

SAT problems for about a decade (very roughly speaking). For certain types of

problems, it is still very good. In many ways, Walk-SAT and MINISAT are polar

opposites.

14.2 Solvers like Walk-SAT 265

Walk-SAT is simple, heuristic, randomized, without any form of learning, and

never outputs UNSATISFIABLE. On the other hand, MINISAT is complex, based

on logical principles, and learns far more clauses than it can use. MINISAT is

equally able to output satisfiable solutions when they exist as it is to certify the

non-existance of a solution with an UNSATISFIABLE output. There is no doubt

that MINISAT is randomized but from the author’s viewpoint, the randomization is

an extremely secondary part of the system, whereas in Walk-SAT, it is very central.

The ability to handle unsatisfiable problems is very important, and so we will

repeat it. The Grasp and Chaff family (which includes MINISAT) can output a sat-

isfying solution, can output UNSATISFIABLE, or can run for a very long time.

Instead, Walk-SAT can only output a satisfying solution or run forever. MINISAT

will always terminate.

14.2.1 The Search Space

Consider a set of variables in some order. Any particular assignment to them

would be a sequence or vector of 1s and 0s, each being a value for a particular

variable. Obviously, if there are n variables, there are 2n possible vectors. We can

define a distance between two vectors as the number of positions in which they differ

(this is the Hamming distance—named for Richard Wesley Hamming). Obviously

the distance is always a non-negative integer.

A neighborhood of distance 1 about a vector is the set of all vectors which differ

in exactly one position, as well as the original vector. Thus any one of the n variables

can be flipped to produce such a vector, for a size of n + 1. The neighborhood of

distance 2 would be all of these, as well as any formed by flipping any pair of

variables, for a size of n2/2+n/2+1.

In Walk-SAT, we will be looking for vectors in the distance 1 neighborhood of

the previous vector. We aim to reduce the number of unsatisfied clauses at each step.

When we can improve in this way, we do. When we cannot, we voluntarily pick a

less-good vector in the hopes that something in its distance 1 neighborhood will

be better. Thus, in a way, we are searching the distance 2 neighborhood when the

distance 1 has no vectors which improve the number of unsatisfied clauses.

14.2.2 Papadimitriou’s Algorithm

The following algorithm, published by Papadimitriou in [186], can in O(n2) ex-

pected steps reach a satisfying solution with probability 1, but only for problems

which can be written in 2-CNF-SAT form. This means that every clause can be

written with at most two variables. Note that all CNF problems can be written in

3-CNF-SAT form [63, Ch. 34.4]. For a definition of CNF form see Section 13.3 on

Page 248.

266 14 How do SAT-Solvers Operate?

Start with a random initial guess, and pick a variable from among those that occur

in unsatisfied clauses and flip its truth assignment. Repeat this until all clauses are

satisfied. Amazingly, this simple approach simply works for 2-CNF-SAT problems.

Whenever a variable is flipped, some satisfied clauses will become unsatisfied, and

some unsatisfied clauses will become satisfied. This is the inspiration for “Greedy

SAT” or GSAT.

INPUT: A set of clauses C and variables V , and two parameters n f lip and nrestart .

OUTPUT: Either a satisfying solution or an abort.

1: For each variable in V , choose either 0 or 1 with equal probability.

2: For i = 1 . . .n f lip do

• If all clauses are satisfied then output result and halt.

• For each variable v ∈V do

– Compute the number of formerly satisfied clauses newly violated if v is flipped, denote

this av.

– Compute the number of formerly unsatisfied clauses newly satisfied if v is flipped, de-

note this bv.

– Let kv← av−bv

• Choose to flip the v which minimizes the kv. Break ties randomly.

3: If nrestart = 0 then abort else decrement nrestart .

4: Restart the algorithm.

Algorithm 27: The SAT-Solver GSAT or “Greedy SAT” [Selman, Levesque, and

Mitchel]

14.2.3 Greedy SAT or G-SAT

Again, we start with a random assignment, and we see how many clauses are

unsatisfied. Now we must, for every variable, determine how many clauses will flip

their status between satisfied and unsatisfied depending on if that variable is flipped

between true and false. We choose the variable which will reduce the total count of

unsatisfied clauses the most. Then we repeat.

Therefore, this is the Greedy Algorithm. At each stage, we simply choose the best

one variable to flip, and we keep doing that until we get a solution. This algorithm

was published by Selman, Levesque, and Mitchel in [208], and there are several

categories (listed in the paper) of problem for which it dramatically out performed

the solvers of its time. These include the N-queens problem (finding locations for

N chess queens on an N×N board so that none can attack each other) and graph

coloring (see Appendix C on Page 315).

The algorithm has two parameters, nrestart and n f lip. The nrestart parameter is

simply to make sure that the algorithm does not run forever (in fact, many textbooks

require this before a procedure can be called an algorithm). However, in practice,

14.2 Solvers like Walk-SAT 267

if one really desires a solution, one would simply run the program a second time

if nrestart is exceeded. Thus, we can consider it to be ∞. On the other hand, n f lip is

very important. The authors of [208] used 5n, 10n, and 15n where n is the number

of variables. If it is set too low, then a very good guess must be made for the con-

vergence to occur fast enough. This has a low probability. If it is set too high, then

not enough of the possible initial conditions will be explored.

One important point that the paper [208] makes is that one must tolerate moves

that do not make progress. In other words, sometimes a variable is flipped, and no

increase in the number of satisfied clauses occurs. Recall, when considering flipping

the variable v, that bv is the number of newly satisfied clauses and av is the number

of newly violated clauses. The algorithm seeks to minimize av− bv = kv. If kv ≥ 0

for all variables, then the flipping of v does not improve the number of satisfied

clauses.

Call a move with minimal kv = 0 to be “sideways” and kv > 0 to be “uphill”,

and all other moves “downhill” (the analogy is to gradient descent). Normally, the

vast majority of moves are downhill. The authors of [208] ran their algorithm in

the form given here (permitting uphill, sideways, and downhill moves) and another

version that would reset rather than make a sideways move. The performance was

universally weaker, both in the solution time and in the fraction of problems solv-

able, when sideways moves are prohibited. Thus, the sideways and uphill moves are

important.

In many algorithms of this form, a tie-breaker can be very important, as several

variables might cause the same number of clause improvements if toggled. The

heuristic chosen for a tie-breaker is to flip a random member of the tie. This way,

very short loops of repeating the same variable settings over and over are avoided.

This is particularly needed because “sideways” moves are valid. One should avoid

cycles like (x,y)∈{(0,0);(0,1);(1,1);(1,0)}which could otherwise repeat forever.

14.2.4 Walk-SAT

The Walk-SAT algorithm [207] has one more parameter than G-SAT, namely

pnoise. Basically, the algorithm can be summarized as follows. First, make a random

initial assignment. Then pick an unsatisfied clause. With probability pnoise we flip

a random variable in that clause. Of course, the clause will now be satisfied but

we may have done massive damage to the system, or perhaps not. With probability

1− pnoise, we will try flipping each of the variables, and we will go with the choice

that reduces the number of unsatisfied clauses the most (the G-SAT step).

The case of flipping a randomly chosen variable seems very odd. However, it is

based on the principle of simulated annealing. When making an alloy of two metals,

via the process of annealing, a mixture is repeatedly heated and left to cool. During

the heating phases the molecules are more free to move around, but in the cooling

phases, they gravitate toward lower-energy states. Simulating annealing, on the other

hand, randomly changes variables (the heating phase) and then has them move to

268 14 How do SAT-Solvers Operate?

lower energy situations (analogous to Gradient Descent or GSAT). An excellent

introduction to simulated annealing can be found in [17].

14.2.5 Walk-SAT versus Papadimitriou

In the paper describing Walk-SAT [207], the authors describe it as a combina-

tion of Papadimitriou and G-SAT, using Papadimitriou’s Algorithm with probability

pnoise and using G-SAT otherwise.

However, they mention that even if pnoise = 1, then Walk-SAT does not quite be-

come Papadimitriou’s algorithm. The reason is that in Walk-SAT one first picks a

random clause. Only then does one pick a random variable to flip. Thus a variable

which appears in 100 unsatisfied clauses is much likelier to be chosen than a variable

which appears in 1 unsatisfied clause. In contrast, Papadimitriou’s algorithm does

not have this voting, but instead one has a set of variables which appear in unsatis-

fied clauses, and a variable is chosen uniformly at random from there. Thus, even

the pnoise = 1 move is “smart” rather than “random”, in the sense of emphasizing

frequently appearing variables.

14.2.6 Where Heuristic Methods Fail

Consider the following system, taken from [208], which has a fixed 5-clause part

(x1∨ x2∨ x3)(x1∨ x3∨ x4)(x1∨ x4∨ x2)(x1∨ x5∨ x2)(x1∨ x5∨ x2)

as well as for some n > 9

(x1∨ x6∨ x7)(x1∨ x7∨ x8)(x1∨ x8∨ x9) · · ·(x1∨ xi∨ xi+1) · · ·(x1∨ xn−1∨ xn)(x1∨ xn∨ x6)

The first part is trivially satisfied if x1 = 1. On the other hand, if x1 = 0 then the

last two clauses among the first five force that x2 = 1, otherwise there is a contradic-

tion arising from x5. Given that x1 = 0 and x2 = 1, then the first clause causes x3 = 1.

Next, the second clause causes x4 = 1, and finally the third clause is unsatisfiable.

Thus, we know logically, that x1 = 1 is required of any satisfying solution.

The second part, which can have variable length, creates a kind of loop. If x1 = 0,

then all n− 5 of these clauses in the second part are satisfiable, regardless of the

value of x6, x7, . . . , xn. If x1 = 1 on the other hand, then these n− 5 clauses are all

satisfied if and only if the variables x6, x7, . . . , xn are all equal.

Consider beginning the algorithm with a random assignment. If x1 = 0 then all

the clauses the second part are satisfied. Some subset of the first five are unsatisfied.

Therefore, the clause selected by the algorithm has to be in the first part. Either x1 is

chosen or not. Most likely not, because flipping x1 would move much of the second

14.3 Back-Tracking 269

part to unsatisfied, and so would have a (very) positive kv. As we stated earlier,

negative kv is the usual case. If x1 is not chosen, we know that the problem will

remain with the first part not all satisfied and the second part all satisfied, because

x1 = 1 in any satisfying solution and because x1 = 0 trivially satisfies the second

part. Now let us consider what happens if x1 is in fact chosen, or if it begins as

x1 = 1.

If x1 = 1 then the first five clauses are all satisfied, and so will not be selected.

Then a clause of the form (x1∨xi∨xi+1) will be chosen, where xn+1 can be thought

of as a pseudonym for x6. Flipping xi or xi+1 will cause changes only to the neigh-

boring clauses, because only the neighboring clauses contain them. On the other

hand, flipping x1 will cause n−5 clauses to be satisfied. So surely x1 will be chosen,

and the algorithm returns immediately to the x1 = 0 state.

Thus, for the whole time the algorithm runs, it will mostly consider the x1 = 0

state, and it is “looking in the wrong places”.

14.2.7 Closing Thoughts on Heuristic Methods

First, there are numerous enhancements to these algorithms which may have

enormous impact in the final efficiency of them. Our purpose here is not to present

the algorithms for use, but to explain them as a contrast to the Chaff/Grasp fam-

ily of algorithm. Second, observe that these methods take no advantage whatsoever

from the structure of the logical nature of CNF forms. Third, the fact that they never

output UNSATISFIABLE, and may even never terminate (except for nrestart) means

that we cannot calculate with confidence how long a calculation will take.

This has major consequences for the “guess-and-determine” approach (see Sec-

tion 11.7 on Page 206), because there if we guess g variables then we must make

2g subproblems. If only one solution actually exists, then 2g−1 of the subproblems

will be unsatisfiable.

The setting of the parameter pnoise is also problematic. Some suggest initially as

high as 0.5 then lowering it slowly to 0.05 as the problem progresses. Others prefer

a fixed value in the range [0.05,0.2].

14.3 Back-Tracking

We will now introduce the Davis-Putnam back-tracking algorithm, which lies at

the heart of “Chaff”—the algorithm implemented in MINISAT. The basics of the

back-tracking system is as follows. Suppose you have an algorithm that can solve n-

variable SAT problems, and you wish to make one that can solve n+1-variable SAT

problems. By induction (since one-variable SAT problems are very easy to solve)

you would then have an algorithm for all SAT problems. Let us call this n-variable

SAT-solver fn.

270 14 How do SAT-Solvers Operate?

INPUT: A set of clauses C and variables V , and three parameters pnoise, n f lip and nrestart .

OUTPUT: Either a satisfying solution or an abort.

1: For each variable in V , choose either 0 or 1 with equal probability.

2: For i = 1 . . .n f lip do

• If all clauses are satisfied

– then output result and halt,

– else choose a violated clause c ∈C, uniformly at random.

• For each variable v ∈ c do

– Compute the number of formerly satisfied clauses newly violated if v is flipped, denote

this av.

– Compute the number of formerly unsatisfied clauses newly satisfied if v is flipped, de-

note this bv.

– Let kv← av−bv

• With probability pnoise choose to flip a random variable in c.

• With probability 1− pnoise choose to flip the v which minimizes the kv.

3: If nrestart = 0 then abort else decrement nrestart .

4: Restart the algorithm.

Algorithm 28: The SAT-Solver “Walk-SAT” [Selman, Kautz, and Cohen]

Given some n + 1-variable CNF problem, we could always just simply guess

some variable. First, we make a backup-copy of the problem. Then, suppose we

guess xi is true. Then any clause containing xi is now satisfied, and can be deleted.

Now consider a clause containing xi. If that is the only term in the clause, then that

clause cannot be satisfied, and we know our assumption that “xi is true” is false; call

will be satisfied if and only if any of the remaining terms are. This is the same thing

as writing the clause with the xi term removed. And so, we delete the xi term in that

clause. This new system is satisfiable if and only if the original one was satisfiable

after the restriction that xi = 1. Baring a “discovered contradiction”, since the new

n on the new system. If there is a “discovered

contradiction”, then we know that the guess is wrong, and we repeat the process as

if we had guessed instead that xi = 0. If this too is a “discovered contradiction”, then

we return that the problem is UNSATISFIABLE.

Either fn will return UNSATISFIABLE, or a satisfying solution. If it returns a

satisfying solution, we will simply append our guess (which we now know is good),

and return that as the satisfying solution to the original system. If fn returns UN-

SATISFIABLE for xi is true, then we know that was a bad guess, and we will repeat

the process guessing xi is false. If that too results in a problem—either because we

encounter a clause with only xi in it (i.e. a discovered contradiction), or because a

lower level of the recursion returns UNSATISFIABLE—then we will return UN-

SATISFIABLE.

That is the process called back-tracking, but it can be made more efficient by us-

ing a stack instead of recursive calls. Whenever an assumption is made, it is pushed

on to an assumption stack. The algorithm proceeds until it discovers a contradiction

(i.e. a single-variable clause whose variable has been guessed the wrong way).

system has one fewer variable, we call f

this a “discovered contradiction”. If the clause contains other terms, then the clause

14.3 Back-Tracking 271

If this is the case, then we “pop” the most recent assumption off of the stack.

If the popped assumption were that xi is true, then we now assume xi is false, and

check to see if the contradiction remains. If the contradiction remains, we keep

popping assumptions until the contradiction no longer remains. At least one xi, if

not several variables, have now changed their state, and so a great deal of rewinding

must take place. Due to clever data structure design, akin to a journaling file-system,

the rewinding can be made very efficient.

If the assumption stack becomes empty, and a contradiction remains, then the

original problem was unsatisfiable. In this case, we output “UNSATISFIABLE”

and we are done. Now assume that the contradiction can be repaired by popping off

one, some, or all of the assumptions, and the algorithm then continues as before,

with new guesses.

Some care is needed to make sure an infinite loop does not result but this is easily

taken care of with flag variables. Once a variable setting has resulted in a contradic-

tion (e.g. v5 = T), and its negation is attempted (e.g. v5 = F), if that also fails, the

system should move further up the assumption stack, and not try the original (e.g.

v5 = T) a second time. Note, there is no reason whatsoever to guess true first. The

best guess is usually to flip a fair coin.

Sometimes searches of a boolean space are described as a tree. Each assumption

is analogous to taking one branch of the tree over another, slowly descending from

off of the stack at once, it is possible to “lop off” large portions of the tree in a single

move.

This “lopping off” of the tree also occurs when clauses are “learned” (see Sec-

tion 14.5.1 on Page 275), a topic we have not yet introduced. Because it can “learn”

clauses, Chaff is much faster than an ordinary tree search, no matter how cleverly

implemented. For this reason, the true running time is conjectured to be∼ cn, where

n is the number of variables, and 1 < c < 2 is a constant. So far, even c < 2 is

not proven, and note that brute-force guessing all possibilities is possible in time

equivalent to c = 2.

The reason that this “lopping off” occurs is that a CNF expression is like a prod-

uct in a factored polynomial. When one factor of a polynomial is zero, the whole

thing is zero. Thus if one clause is false, the conjunction of them all is false. For this

reason, one need not investigate all the settings for the other clauses. Once a sub-tree

has been identified as having the property of always forcing some particular clause

to be false, that entire sub-tree can be ignored.

This idea is attributed to Davis and Putnam in the papers [92] and [91]. It is

noteworthy that the DPLL algorithm (as well as many other SAT-solvers) can be

used to create a proof-sketch of unsatisfiability via the backtracking process.

In [170], the idea of resolving the conflicts non-chronologically was introduced

by João Maques-Silva and Karem Sakallah, with the algorithm “Grasp”, which

helped lead to “Chaff.”

One can imagine that the back-tracking process can be improved. Between each

guess, it might be quite logical to search for single-variable clauses. For each clause,

if it is of the form (xi), we can just set xi = 1 and make the corresponding deletions.

the root to the leaves. Note that because more than one assumption can be popped

272 14 How do SAT-Solvers Operate?

If that results in a contradiction, then since setting xi = 0 surely would have resulted

in a discovered contradiction, we know some prior guess is wrong and we should

immediately return UNSATISFIABLE (or pop the stack). If its of the form xi we

can likewise just set xi = 0, because likewise xi = 1 would cause a discovered con-

tradiction. This can be dramatically generalized, and later became the “pure literal

elimination” and “unit propagation” rules, which are the backbones of “Chaff.”

In the absence of learned clauses, we can see that every case must be attempted

before one can conclude that a problem is unsatisfiable. But given a satisfiable prob-

lem, especially one with many solutions, we can arrive at a solution quickly. Learned

clauses, which will define in Section 14.5.1 on Page 275, will change this property

dramatically.

14.4 Chaff and its Descendants

There is a large economic and financial incentive to make good SAT-solvers (see

Section 14.6 on Page 276). For this reason, a series of competitions has been held

each year since 2002 [46]. (See http://www.satcompetition.org/) The

Chaff algorithm proposed by [182] is at the core of most currently competitive SAT-

solvers.

Like most users of SAT-solvers, we treat the system as a black-box, worrying

only on how to present it with our problem in a way that results in the most efficient

search for a solution.

14.4.1 Variable Management

Every variable in the system will be given one of three values, namely true, false,

and not-yet-known. Initially, all variables are set to not-yet-known. As mentioned

earlier, variables in a clause can be negated or not-negated. The first step is to replace

all the negated variables with new ones (thus doubling the number of variables).

However, the original variables are identified by the positive integers. The negation

of a variable has as its ID, the additive inverse of the original ID. Thus whenever the

variable numbered x is set to true, then it is understood that −x will be set to false,

regardless of the original sign of x.

Because the terminology might get confusing, a useful distinction is made here.

A “literal” is either −x or x after the doubling has occurred. A “variable” refers to

both x and −x, or in other words, a variable in the initial problem statement.

blarg

There are three consequences to this. First, none of the literals in the system are

negated after this step; even though there are twice as many literals as variables,

they are tied together as described; and when one literal is changed to true or false

from “not-yet-known”, its complement literal will be set accordingly.

14.4 Chaff and its Descendants 273

There will be an array from −n to n that contains all system literals. Each literal

will have a list of clauses that contain it, and every clause will have a list of liter-

als that it contains. This is vital in the efficient encoding of (and even the human

understanding of) the algorithm.

14.4.2 Unit Propagation

Now each clause is a disjunction (OR-gate) of some particular literals. If any

of those literals is at any time true, then the clause is satisfied. We will declare

the clause “inactive” and it will be hidden from the algorithm. Thus the “active”

clauses are those that are not yet satisfied. Likewise, if all of the literals are false,

then satisfiability has become impossible, and back-tracking must take place. Back-

tracking is discussed in Section 14.3 on Page 269.

Therefore, an active clause (except during backtracking) has no literals set to

true—all of its literals are set to false or not-yet-known, with at least one of those

being not-yet-known. But suppose, out of n literals, a clause were to have n−1 false

literals and one not-yet-known. Clearly, in any satisfying assignment, that not-yet-

known literal must be true, and so we can set it to true. This rule is called “unit

propagation” or sometimes “derivation of implication.”

14.4.3 The Method of Watched Literals

In practice, each clause has two pointers associated with it, which we will denote

“fingers”. Each finger must point to a literal, and since all variables/literals begin the

system with the status of not-yet-known, in any clause they both point to a (distinct)

not-yet-known literal. They may never point to the same literal. If the status of a

fingered literal changes, then the finger will move. If the literal becomes true, then

the clause is now inactive, and out of the algorithm. If the literal becomes false, then

the finger will try to move to another literal in the same clause which is not-yet-

known. If this is possible, it moves there. If not, then this means there is one not-

yet-known literal (pointed to by the other finger) and all the other literals are false

(because the clause is still active). As we stated before, this means that the remaining

single not-yet-known literal must be set to true (precisely a unit propagation). And

conveniently, we do not need to search for it, because the other finger is pointing

to it. The clause is now satisfied and can be deleted. This is called the “Method of

Watched Literals.”

It is a good time to note there are two reasons that a separate list is kept for

the set of clauses that use v and −v. Step 1 is that if unit propagation causes v

to become true, the algorithm must do two things. First, it must simply deactivate

any clauses containing v. Step 2, clauses containing −v need to have their fingers

274 14 How do SAT-Solvers Operate?

moved. These are distinct operations. The other reason is to enable “pure literal”

propagation, described in the next section.

14.4.4 Absent Literals

One additional rule is used. If a literal v is found somewhere in the entire system,

and−v is not, then it is safe to set v to true and−v to false. This sounds like it might

require a search. The beauty of the “Chaff” algorithm is that it uses pointers in a

clever way to ensure that searches are not needed, except at setup. More precisely,

each literal has a linked list to the clauses that use it. Likewise, if −v is found in the

system and not v, then it is safe to mark v false. This procedure is sometimes called

“pure literal propagation”.

When a literal is set to true, any clause that contains it is deactivated. Then for

each of those newly deactivated clauses, the literals contained in them are notified

to remove that clause from their list of clauses that contain them. If one of those lists

becomes empty, the literal then is not found in the system. This means its comple-

ment can be marked true, and it can be marked false, with all the consequences that

this paragraph requires from that marking. Once this is done, the complement of the

original literal which was set to true can be set to false.

When a literal is set to false, all the clauses that contain it are notified. If that

literal had one of the clause’s two fingers pointing to it then that finger is moved to

any literal in that clause that is currently marked not-yet-known. If no such literal

is available, then the literal pointed to by the other finger is marked true, with all

the consequences we described above. Of course, if an entire clause becomes false,

the system has discovered a contradiction and must begin back-tracking (see Sec-

tion 14.3 on Page 269). And if not already done so, the complement of the literal

already set to false should be now set to true, with all the consequences that entails.

14.4.5 Summary

Thus, we start with a system with all the literals set to not-yet-known. We build

the data-structures previously described. If any of the literals v fails to appear in the

system, (i.e. the list of clauses containing v is empty), then we mark v false and mark

−v true, which hopefully sets off a flurry of activity. Then either the system will

halt with all clauses inactive, which means we have found a satisfying assignment,

and print it out; or halt with a contradiction which means the original problem was

unsatisfiable; or with overwhelming probability, knock-out only a few things and

leave a problem that looks relatively unchanged.

At this time, we choose a not-yet-known literal to be “assumed.” For example,

with 1% probability, it could be a randomly chosen variable. Otherwise, with prob-

ability 99%, it is that variable which appears in the largest number of clauses (has

14.5 Enhancements to Chaff 275

the longest list of clauses associated). The variable selection is a heuristic and varies

from implementation to implementation. This variable will now be changed to true

or false, decided by a fair coin. Then that assumption will be pushed on to an “as-

sumption stack.” Hopefully, this also sets off a flurry of activity and either results

in a satisfying assignment or a smaller problem. If a satisfying assignment has re-

sulted, we print the answer and declare victory. If a smaller problem results, we

guess another variable.

14.5 Enhancements to Chaff

Once the previous description is understood, the following enhancements make

the system very efficient.

14.5.1 Learned Clauses

There is one last element of this algorithm, namely learning new clauses. Suppose

the assumption stack has five assumptions on it (without loss of generality: v1, v2,

. . . , v5 are true), and a contradiction results. We then know that

(v1∧ v2∧ v3∧ v4∧ v5)

is true, which by DeMorgan’s Law is equivalent to

v1∨ v2∨ v3∨ v4∨ v5

which is conveniently a CNF clause! Thus we have “learned” a new clause from

this contradiction, which we can safely toss into the system. These learned clauses

might be quite long, (if the stack was large when the contradiction occurred) and

there might be many of them (if many contradictions were found). They are added

to the system but flagged as “learned.” If a learned clause has not served a purpose

in a long time (e.g. it hasn’t changed activation status within t ≈ 105 steps) then it

can be deleted, but clauses that were part of the original problem are never deleted.

This keeps a bound on the number of clauses.

Sometimes a set of clauses will simultaneously become all false, each alone

enough to produce a contradiction. In this case, many clauses can be added at once.

14.5.2 The Alarm Clock

Finally, the algorithm has an alarm clock. If the algorithm hasn’t found an answer

after a certain length of time has elapsed, then it will completely reboot the entire

276 14 How do SAT-Solvers Operate?

system, except that it retains any clauses that it learned. The idea is that by starting

over with this new information, a more efficient path might be taken. The initial

timer is set quite short, and then increases after each time-out. In at least one imple-

mentation, the new time-out will be
√

2 times as long as the old one. This is better

than a fixed timer of t seconds, because a problem that required t +ε seconds would

be unsolvable. In any case, this is all heuristic, and it seems to work in practice.

14.5.3 The Third Finger

Another variant, not universally employed, is to add a third finger to each clause.

Like the first two fingers, it can only be attached to a literal which is not-yet-known,

and is not currently pointed to by one of the other two fingers. Once this is no longer

possible in an active clause, the system is aware that two literals are not-yet-known,

and all the others are false in that clause. (Note, if there were a literal equal to “true”

there, then the clause would be inactive). Thus the failure of the third finger to attach

gives the system warning that this particular clause is “ready” or “armed” and about

to trigger a unit propagation if any of its literals become false.

14.6 Economic Motivations

A digital circuit can be laid out as a collection of transistors or simple gates

based on its logical description. In fact, CNF, ANF and DNF, are often used for

this purpose. However, to find the most efficient layout is almost impossible. Yet,

sometimes a circuit’s size can be cut by a huge factor by using optimization tools.

The reason for this is that large sub-circuits might be redundant or equivalent. In

industry, SAT-solvers are quite often used to detect this condition.

For example, suppose a certain sub-circuit of a larger circuit is not satisfiable.

Then surely one can replace it with a 0, saving many gates. If not, then suppose its

negation is not satisfiable. Then the designer can replace it with a 1. For this reason,

the CNF-SAT problem is crucial to the efficient implementation of microelectronics.

(Though the problems frequently solved by SAT-solvers are usually much more

complex than those two simple examples).

A non-trivial example would be to detect the equivalence of sub-circuits A and

B. If
(
A∧B

)
∨
(
A∧B

)

is unsatisfiable, then clearly A and B always agree. Since their outputs are always the

same, there is no need to have both of them present. This is an oversimplification,

because speed-of-light considerations might make it useful to have one at each end

of a huge circuit. But logically speaking, it is not useful to have both present.

14.7 Further Reading 277

Over the years, there have been so many new and efficient SAT-solvers that the

common way to solve many NP-Complete problems is to convert the problem into

a CNF file, and then call a SAT-solver to find a satisfying assignment. In some ways

it is amazing that this works, because much information is lost when performing

the conversion. Yet it is a common practice, because SAT-solvers have been so care-

fully tuned by many researchers over several decades. The common applications are

planning, AI, circuit-layout, and automated theorem proving.

14.7 Further Reading

The following further reading will be useful for the Walk-SAT family.

• “On Selecting a Satisfying Truth Assignment” by C. H. Papadimitriou [186],

published in the proceedings of FOCS’91.

• “A new method for solving hard satisfiability problems” by B. Selman, H. J.

Levesque, and D. G. Mitchell [208], published in the proceedings of AAAI’92.

• “Local Search Strategies for Satisfiability Testing” by Bart Selman, Henry Kautz,

and Bram Cohen [207], published in the proceedings of the Second DIMACS

Implementation Challenge, 1993.

The following further reading will be useful for the Chaff/MINISAT family.

• “A computing procedure for quantification theory” by Martin Davis and Hilary

Putnam [92], published in the Journal of the Association of Computing Machin-

ery in 1960.

• “A Machine Program for Theorem Proving” by Martin Davis, George Logemann

and Donald W. Loveland [91], published in Communications of the ACM in

1962.

• “GRASP: A Search Algorithm for Propositional Satisfiability” by João P.

Marques-Silva and Karem A. Sakallah [170], published in the IEEE Transac-

tions on Computers in 1999.

• “Chaff: Engineering an Efficient SAT Solver”, by Matthew W. Moskewicz,

Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik [182], published

in the proceedings of the 28th Design Automation Conference (DAC’01).

• “An Extensible SAT-solver” by Niklas Een and Niklas Srensson [103], published

at SAT’03.

• “Effective Preprocessing in SAT through Variable and Clause Elimination” by

Niklas Een and Armin Biere [102], published at SAT’05.

Chapter 15

Applying SAT-Solvers to Extension Fields of

Low Degree

15.1 Introduction

In this book we have been discussing polynomial equations over finite fields

of characteristic two for quite some time. However, the finite field in question has

almost always been GF(2). In cryptanalysis, this is usually the field of interest,

with notable exceptions, including several ciphers: Rijndael [89] which later become

the Advanced Encryption Standard (AES), which uses GF(256); the cryptosystem

called TTM [127], over the same field; the Courtois Toy Cipher (CTC) [14] [73],

can be modeled over GF(8) for certain settings. The stream cipher family QUAD

[42] can operate over any finite field, but finite fields of characteristic two would be

the natural setting (see Section 5.2 on Page 66).

As a step toward being able to operate on systems of polynomial equations over

fields like GF(256) or GF(232), we present the following research on smaller exten-

sion fields. In particular, we will show how to use a classic matrix representation of

these fields to efficiently produce algebraic normal forms (logical sentences) for the

multiplication operation of the extension field as viewed from GF(2). These formu-

las can then be used to rapidly convert the system from over GF(2n) to over GF(2),
with n times as many variables. Here and in Appendix B on Page 309, we provide

formulas for GF(4) upto GF(64). If extension fields are not familiar to the reader,

see Section 15.10 on Page 295 for a review.

Once these formulas are found, the system can be solved with SAT-solvers (ex-

plained below) rather than with traditional Gröbner Bases methods, such as SINGU-

LAR [9] and MAGMA [2]. Even for small systems, MAGMA (using F4) would crash

due to a lack of memory, for example allocating 29.9 gigabytes for a system of 8

cubic equations in 8 unknowns over GF(32). While Gröbner Bases algorithms like

Faugére’s F4 [109] and F5 [110], as implemented in MAGMA, are often faster, they

require tremendous quantities of memory, and so problems of interest to cryptanaly-

sis are impossible. Meanwhile, traditional Gröbner Bases methods like the original

Buchberger algorithm, implemented in SINGULAR, are far slower than MAGMA.

Thus SAT-solvers provide an interesting medium, for problems that are far too hard

© Springer Science + Business Media, LLC 2009

G.V. Bard, Algebraic Cryptanalysis, DOI: 10.1007/978-0-387-88757-9_15 279

280 15 Applying SAT-Solvers to Extension Fields of Low Degree

for the available memory, but simple enough to not exhaust the user’s patience in

running time. To help understand the balance between these three options, we have

performed experiments, described below. Furthermore, we have found that if the

number of equations is roughly half the number of unknowns, that SAT-solvers do

quite well, much better than MAGMA or SAGE.

15.2 Solving GF(2) Systems via SAT-Solvers

As discussed in Chapter 12, several options exist when presented with a polyno-

mial system of equations over a finite field, in n variables. If there are roughly n2/2

equations, linearization will work. If one is close to but below this threshold, then

the XL algorithm [82], will work as explained in Section 12.4 on Page 213.

However, if the number of equations is roughly the number of unknowns,

Gröbner Bases methods are the usual solution, or brute force guessing all the vari-

ables. There is some debate as to whether Gröbner Bases algorithms are faster than

brute force in general, but in typical cryptanalytic problems, they can be faster than

brute force [111] [58]. The traditional Buchberger algorithm (used by SINGULAR

[9], for example) for Gröbner Bases is available, as well as the algorithms F4 and

F5 by Faugère (used by MAGMA [2], for example), which is very fast but requires a

great deal of memory in practice.

In Chapter 13, we proposed that SAT-solvers are useful for solving polynomial

systems of equations over GF(2), especially if the system is sparse or over-defined.

In particular, the SAT-solver approach was slower than MAGMA if MAGMA did not

crash for lack of memory. But it almost always crashed for this lack, for reasonable

sized problems. Conversely, SAT-solvers were slower in practice but use a constant

amount of memory, and so actually returned answers.

15.2.1 Sparsity

Recall, the sparsity of a polynomial system of equations is represented by β ,

which is the ratio of the number of non-zero coefficients to the number of possible

coefficients. So for a cubic system of m equations over n variables, with c non-zero

coefficients this would be

β =
c

m
((

n
3

)
+
(

n
2

)
+
(

n
1

)
+
(

n
0

))

if the system is over GF(2). This is because there is never a need for an exponent in

any monomial for a polynomial over GF(2), as x2 = x. However, in extension fields,

this becomes false, as there are x such that x2 6= x.

For example, in GF(q) for q > 3, we would add 2n to the denominator in the

previous example to reflect monomials that are squares and cubes of a variable, as

15.4 Polynomial Systems over Extension Fields of GF(2) 281

well as n2 terms of the form x2
i x j. Over all, however, the values of β are comparable,

as these corrections are small compared to the value of the denominator for large n.

See also Theorem 16 on Page 47.

Finally, note that β is sometimes called the “density”, rather than the “sparsity”,

to reflect that β = 0.0001 is rather sparse, and has a low density of non-zero terms.

15.3 Overview

The entire process can be thought of as follows. First, for any particular extension

field, we construct a matrix model of that finite field. Second, we perform some

matrix multiplication to get a matrix that represents the product of two, three, and

four unknown field entries (these are large symbolic expressions, and the last one

is gigantic). Third, we convert this to a formula over GF(2), using the remarkable

property that there are some elements of the matrix M that are always 0 for Mn,

except for one particular value of n, where they are 1, with 0≤ n < q. We call such

entries “dead give-aways”.

Now we have a formula for a double, triple, and quadruple product over the finite

field in question, and this process, which is very fast, need never be performed again

for that extension field. For example, we have done this for GF(4), . . . ,GF(64), and

chose GF(16) as an extended example in this book, and GF(32) for the experiments.

Fourth, for any polynomial system of equations over the finite field, we will con-

vert any monomial cxix j using our triple product formula. Likewise, cxix jxk will

be converted with the quadruple product formula, and cxi with the double product

formula. There are also formulas for terms like cx2
i described in Section 15.6.1 on

Page 287. The monomials are now each q monomials over GF(2), where the orig-

inal formula was over GF(2q). Fifth, we add together all these formulas for all the

monomials in a given polynomial. Now the entire original polynomial is a set of q

polynomials over GF(2). Sixth, we remove monomials that contain multiplication

by zero (there will be many—roughly half the monomials written so far). Seventh,

we convert the polynomial system of equations over GF(2) (with q times as many

variables and equations as the original over GF(2q)) into a CNF-SAT problem us-

ing the techniques of [33] and Chapter 13. Eighth, we solve the CNF-SAT problem

using the SAT-solver MiniSAT, and this yields one solution to the original problem.

In algebraic cryptanalysis, there is only one solution, so we are done.

15.4 Polynomial Systems over Extension Fields of GF(2)

The extension field will be modeled as a quotient ring of GF(2)[α], the ring of

polynomials in a single variable α with coefficients in GF(2). The quotient will be

in terms of the principle ideal generated by a particular polynomial, of the degree

of the required extension, and irreducible over GF(2). Specifically, the following

282 15 Applying SAT-Solvers to Extension Fields of Low Degree

polynomials were used

GF(4) α2 +α +1

GF(8) α3 +α +1

GF(16) α4 +α +1

GF(32) α5 +α2 +1

GF(64) α6 +α +1

Of course, all finite fields of the same size are isomorphic, so the particular poly-

nomial chosen is of little importance. Each of the polynomials above has weight

three (the number of monomials), and choosing polynomials of non-minimal weight

would artificially increase the densities of the formulas we produce. But there is no

reason not to choose a polynomial of minimal weight.

15.4.1 Extensions of the Coefficient Field

We should stress here that we are interested only in solutions over the coefficient

field. If one is interested in solutions over an extension field of the coefficient field,

then one can carry-out all operations here as if one were in the extension field from

the beginning. In other words, if the coefficients are in GF(8) and one is interested

in GF(512) solutions, then one can treat the entire system as over GF(512), since

all elements of GF(8) are elements of GF(512) for the right choice of bases.

15.4.2 Difficulty in Bits

Some cryptographers measure the difficulty of a problem in bits, meaning the

logarithm base two of the number of possible solutions. In this case, for GF(2k)
polynomial systems with n variables, the difficulty is kn-bits. Thus, for GF(32),
used in our trials, one can see that 7 variables was roughly the threshold of feasibility

for one hour. But that is 35 bits, an otherwise significant difficulty, as 235 is roughly

32 billion possibilities.

15.5 Finding Efficient Arithmetic Representations via Matrices

The technique below, of representing field elements by matrices, is classic and

has been known for a long time. However, we will use a property of those particular

cells of the matrix which happen to be 1 for one basis element, but 0 for all other

basis elements, to help us rapidly generate formulas for the finite field arithmetic.
We will use GF(16) as an extended example, but the same arguments work for

any other choice. For our experiments, we switched to GF(32). The companion

15.5 Finding Efficient Arithmetic Representations via Matrices 283

matrix of α4 +α +1 has several properties one of which is that when substituted for
α in that equation, it results in the zero matrix. Call this matrix A. We can calculate
the powers of A, which are listed below:

A0 =







1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1







A1 =







0 0 0 1

1 0 0 1

0 1 0 0

0 0 1 0







A2 =







0 0 1 0

0 0 1 1

1 0 0 1

0 1 0 0







A3 =







0 1 0 0

0 1 1 0

0 0 1 1

1 0 0 1







A4 =







1 0 0 1

1 1 0 1

0 1 1 0

0 0 1 1







A5 =







0 0 1 1

1 0 1 0

1 1 0 1

0 1 1 0







. . .

By virtue of the polynomial α4 + α + 1, we know that A4 = −A1−A0, which

since we are in characteristic two is A + I. Therefore α4 and all higher powers can

be discarded, and one can show that I,A,A2,A3 is a basis for the field, when the field

is considered a 4-dimensional vector space over GF(2).
Now we can represent the element f0 + f1α + f2α2 + f3α3 as f0I + f1A+ f2A2 +

f3A3, a single 4×4 matrix. This is a very old technique, and is found in the free Inter-

ent textbook Applied Abstract Algebra by Joyner, et al [144, “Matrix constructions

of finite fields”], and so we will not include proofs at this point.

Consider M = f0I + f1A + f2A2 + f3A3. Observe that the M11 cell is 1 for A0

but 0 for all other powers of A. Likewise, the M14 is 1 for A and zero for the other

powers. The equivalent cell for A2 is M13 and for A3 is M12. Thus after converting

some fields elements into matrices, and performing a series of matrix operations on

them to obtain M, we can recover the field element in f0 + f1α + f2α2 + f3α3 form

by noting that

f0 = M11, f1 = M14, f2 = M13, f3 = M12

This is significant because it might otherwise be hard to convert back from a single

matrix to the four-dimensional notation. These cells that are zero for all powers of

A with one exception, are “dead give-aways” of the normal field representation. We

prove they will always exist in Theorem 92 on Page 298.

Now, we will obtain a logical formula for the triple product p = abc, where a,

b, and c, are all elements of GF(16). One can define X = a0I +a1A+a2A2 +a3A3,

where a = a0 +a1α +a2α2 +a3α3 and likewise Y and Z for b and c. Note that the ai

are elements of GF(2), and since GF(16) is a GF(2)-vector space of dimension 4,

the addition operation T = X +Y +Z is just vectorial addition, with si = ai +bi +ci,

and T = s0 + s1α + s2α2 + s3α3.

For example, we have a = a0 +a1α +a2α2 +a3α3 encoded as

X =







a0 a3 a2 a1

a1 a3 +a0 a2 +a3 a1 +a2

a2 a1 a3 +a0 a2 +a3

a3 a2 a1 a3 +a0







284 15 Applying SAT-Solvers to Extension Fields of Low Degree

and so the sum of two of these is just a matrix sum, with the simple addition of the

entries.

The multiplication operation is much more complex. Using one’s favorite algebra

software (the author used MAPLE), one can calculate M = XY Z symbolically, as a

matrix product. Then using the “dead give-away” entries M11, M14, M13, and M12,

one can recover the following formulas, for p0, p1, p2 and p3 respectively, each of

which is the entry in the specified matrix position.

p0 = c0a0b0 + c0a3b1 + c0a2b2 + c0a1b3 + c1a0b3 + c1a3b0 + c1a3b3 + c1a2b1 + c1a1b2

+c2a0b2 + c2a3b2 + c2a3b3 + c2a2b0 + c2a2b3 + c2a1b1 + c3a0b1 + c3a3b1 + c3a3b2

+c3a2b2 + c3a2b3 + c3a1b0 + c3a1b3

p1 = c0a3b1 + c1a0b3 + c0a1b3 + c1a0b0 + c2a3b2 + c2a2b0 + c2a2b3 + c2a1b1 + c2a0b2

+c3a0b1 + c3a3b1 + c3a2b2 + c3a1b0 + c3a1b3 +a3b3c3 +a0b3c2 + c1a1b2

+a3b0c2 +a2b1c2 +a1b2c2 +a0b2c3 +a3b2c0 +a2b0c3 +a2b3c0 +a1b1c3 + c1a3b1

+c1a2b2 + c1a1b3 +a0b1c0 +a1b0c0 + c0a2b2 + c1a3b0 + c1a3b3 + c1a2b1

p2 = c2a1b3 +a3b0c3 +a2b1c3 +a1b2c3 + c2a3b3 + c3a3b2 + c3a2b3 +a0b3c2 +a0b3c3

+a3b0c2 +a2b1c2 +a1b2c2 +a0b2c3 +a3b2c0 +a2b0c3 +a2b3c0 +a1b1c3 + c1a3b1

+c1a2b2 + c1a1b3 + c2a0b0 + c2a3b1 + c2a2b2 +a0b2c0 +a3b3c0 +a2b0c0 +a1b1c0

+c1a0b1 + c1a3b2 + c1a2b3 + c1a1b0

p3 = c3a0b0 + c2a1b3 +a3b0c3 +a2b1c3 +a1b2c3 + c2a3b2 + c2a2b3 + c3a3b1 + c3a2b2

+c3a1b3 +a3b3c3 +a0b3c0 +a3b0c0 +a2b1c0 + c2a3b1 + c2a2b2 + c1a3b3 +a1b2c0

+c1a0b2 + c1a2b0 + c1a1b1 + c2a0b1 + c2a1b0 +a3b3c0 + c1a3b2 + c1a2b3 +a0b3c3

M = p0 +α p1 +α2 p2 +α3 p3

Likewise, for the double product, p = ab, one obtains

p0 = a0b0 +a3b1 +a2b2 +a1b3

p1 = a0b1 +a3b1 +a3b2 +a2b2 +a2b3 +a1b0 +a1b3

p2 = a0b2 +a3b2 +a3b3 +a2b0 +a2b3 +a1b1

p3 = a0b3 +a3b0 +a3b3 +a2b1 +a1b2

and for the quadruple product abcd,

p0 = d0c0a0b0 +d0c0a3b1 +d0c0a2b2 +d0c0a1b3 +d0c1a0b3 +d0c1a3b0 +d0c1a3b3 +d0c1a2b1

+d0c1a1b2 +d0c2a0b2 +d0c2a3b2 +d0c2a3b3 +d0c2a2b0 +d0c2a2b3 +d0c2a1b1 +d0c3a0b1

+d0c3a3b1 +d0c3a3b2 +d0c3a2b2 +d0c3a2b3 +d0c3a1b0 +d0c3a1b3 +d1c3a0b0 +d1c2a3b2

+d1a1b2c3 +d1a1b2c0 +d1a2b1c3 +d1a2b1c0 +d1a3b3c3 +d1a3b3c0 +d1a3b0c3 +d1a3b0c0

+d1a0b3c3 +d1c3a1b3 +d1c3a2b2 +d1c2a1b3 +d1c2a1b0 +d1c2a2b2 +d1c2a3b1 +d1c2a0b1

+d1c1a1b1 +d1c1a2b3 +d1c1a2b0 +d1c1a3b2 +d1c1a0b2 +d1c1a3b3 +d1c3a3b1 +d1c2a2b3

+d1a0b3c0 +d2c2a3b3 +d2c2a0b0 +d2a1b2c3 +d2a2b1c3 +d2a3b3c0 +d2a3b0c3 +d3a1b1c3

+d2a0b3c3 +d2c3a2b3 +d2c3a3b2 +d2a2b3c0 +d2a2b0c3 +d2a2b0c0 +d2a3b2c0 +d2a0b2c3

+d2a0b2c0 +d2a1b2c2 +d2a2b1c2 +d2a3b0c2 +d2a0b3c2 +d2c2a1b3 +d2c2a2b2 +d2c2a3b1

15.5 Finding Efficient Arithmetic Representations via Matrices 285

+d2c1a2b3 +d2c1a3b2 +d2c1a1b0 +d2c1a2b2 +d2c1a3b1 +d2c1a0b1 +d2a1b1c3 +d2a1b1c0

+d2c1a1b3 +d3c1a1b2 +d3c2a1b1 +d3c2a2b3 +d3c1a1b3 +d3c2a2b0 +d3c0a2b2 +d3c1a3b1

+d3c1a0b0 +d3c2a3b2 +d3c1a0b3 +d3c0a1b3 +d3c0a3b1 +d3a3b3c3 +d3c3a1b3 +d3c3a1b0

+d3c3a2b2 +d3c2a0b2 +d3c1a3b0 +d3a2b3c0 +d3a2b0c3 +d3c1a2b1 +d3a3b2c0 +d3a0b2c3

+d3a1b2c2 +d3a2b1c2 +d3a3b0c2 +d3a0b3c2 +d3c1a3b3 +d3a1b0c0 +d3a0b1c0 +d3c3a0b1

+d3c3a3b1 +d3c1a2b2

p1 = c1a0b0d0 +a3b3c3d0 +a2b3c0d0 +a2b0c3d0 +a3b2c0d0 +a0b2c3d0 +a1b2c2d0 +a2b1c2d0

+a3b0c2d0 +a0b3c2d0 +a1b0c0d0 +a0b1c0d0 + c1a2b2d0 + c1a3b1d0 +a1b1c3d0 + c1a1b3d0

+c1a0b2d2 + c1a3b3d2 + c3a3b1d2 + c2a2b3d2 +a0b3c0d2 + c2a0b0d3 +a1b2c3d3 +a2b1c3d3

+a3b3c0d3 +a3b0c3d3 +a0b3c3d3 +a2b0c0d3 +a0b2c0d3 + c2a1b3d3 + c2a2b2d3 + c2a3b1d3

+c1a2b3d3 + c1a3b2d3 + c1a1b0d3 + c1a0b1d3 +a1b1c0d3 +d0c0a3b1 +d0c0a2b2 +d0c0a1b3

+d0c1a0b3 +d0c1a3b0 +d0c1a3b3 +d0c1a2b1 +d0c1a1b2 +d0c2a0b2 +d0c2a3b2 +d2c1a1b0

+d0c2a2b0 +d0c2a2b3 +d0c2a1b1 +d0c3a0b1 +d0c3a3b1 +d0c3a2b2 +d0c3a1b0 +d2a0b3c2

+d0c3a1b3 +d1c3a0b0 +d1a1b2c3 +d1a1b2c0 +d1a2b1c3 +d1a2b1c0 +d1a3b3c3 + c1a2b0d2

+d1a3b3c0 +d1a3b0c3 +d1a3b0c0 +d1a0b3c3 +d1c2a1b3 +d1c2a1b0 + c2a1b0d2 + c2a0b1d2

+d1c2a2b2 +d1c2a3b1 +d1c2a0b1 +d1c1a1b1 +d1c1a2b3 +d1c1a2b0 +d1c1a3b2 +d1c1a0b2

+d1a0b3c0 +d2c2a3b3 +d2c2a0b0 +d2a3b3c3 +d2c3a2b3 +d2c3a3b2 +d2a2b3c0 + c1a1b1d2

+d2a2b0c3 +d2a2b0c0 +d2a3b2c0 +d2a0b2c3 +d2a0b2c0 +d2a1b2c2 +d2a2b1c2 +d2a3b0c2

+d2c1a2b2 +d2c1a3b1 +d2c1a0b1 +d2a1b1c3 +d2a1b1c0 +d2c1a1b3 +d3c1a1b2 +d3c2a3b3

+d3c2a1b1 +d3c2a2b3 +d3c2a2b0 +d3c0a2b2 +d3c1a0b0 +d3c2a3b2 +d3c1a0b3 +d3c0a1b3

+d3c0a3b1 +d3a3b3c3 +d3c3a1b3 +d3c3a1b0 +d3c3a2b3 +d3c3a2b2 +d3c3a3b2 +d3c2a0b2

+d3c1a3b0 +d3c1a2b1 +d3c1a3b3 +d3a1b0c0 +d3a0b1c0 +d3c3a0b1 +d3c3a3b1 +d1c0a0b0

+d1c0a3b1 +d1c0a2b2 +d1c0a1b3 +d1c1a0b3 +d1c1a3b0 +d1c1a2b1 +d1c1a1b2 +d1c2a0b2

+d1c2a3b3 +d1c2a2b0 +d1c2a1b1 +d1c3a0b1 +d1c3a3b2 +d1c3a2b3 +d1c3a1b0 + c3a0b0d2

+c2a3b2d2 +a1b2c0d2 +a2b1c0d2 +a3b0c0d2 + c3a1b3d2 + c3a2b2d2

p2 = a2b3c0d0 +a2b0c3d0 +a3b2c0d0 +a0b2c3d0 +a1b2c2d0 +a2b1c2d0 +a3b0c2d0 +a0b3c2d0

+c1a2b2d0 + c1a3b1d0 +a1b1c3d0 + c1a1b3d0 + c1a0b2d2 +a0b3c0d2 + c2a0b0d3 +a2b0c0d3

+a0b2c0d3 + c1a1b0d3 + c1a0b1d3 +a1b1c0d3 +d0c2a3b3 +d0c3a3b2 +d0c3a2b3 +d1c2a3b2

+d1a3b3c3 +d1c3a1b3 +d1c3a2b2 +d1c1a3b3 +d1c3a3b1 +d1c2a2b3 +d2c2a3b3 +d2a1b2c3

+d2a2b1c3 +d2a3b3c3 +d2a3b3c0 +d2a3b0c3 +d2a0b3c3 +d2c3a2b3 +d2c3a3b2 +d2c2a1b3

+d2c2a2b2 +d2c2a3b1 +d2c1a2b3 +d2c1a3b2 +d3c2a3b3 +d3c2a2b3 +d3c1a1b3 +d3c2a3b2

+d3a3b3c3 +d3c3a1b3 +d3c3a2b3 +d3c3a2b2 +d3c3a3b2 +d3a2b3c0 +d3a2b0c3 +d3a3b2c0

+d3a0b2c3 +d3a1b2c2 +d3a2b1c2 +d3a3b0c2 +d3a0b3c2 +d3c1a3b3 +d3c3a3b1 +d3c1a2b2

+d3c1a3b1 +d3a1b1c3 +d1c0a3b1 +d1c0a2b2 +d1c0a1b3 +d1c1a0b3 +d1c1a3b0 +d1c1a2b1

+d1c1a1b2 +d1c2a0b2 +d1c2a2b0 +d1c2a1b1 +d1c3a0b1 +d1c3a1b0 + c3a0b0d2 +a1b2c0d2

+a2b1c0d2 +a3b0c0d2 + c2a1b0d2 + c2a0b1d2 + c1a1b1d2 + c1a2b0d2 +d2c0a0b0 +d2c0a3b1

+d2c0a2b2 +d2c0a1b3 +d2c1a0b3 +d2c1a3b0 +d2c1a2b1 +d2c1a1b2 +d2c2a0b2 +d2c2a2b0

+d2c2a1b1 +d2c3a0b1 +d2c3a1b0 + c3a0b0d3 +a1b2c0d3 +a2b1c0d3 +a3b0c0d3 + c2a1b0d3

+c2a0b1d3 + c1a1b1d3 + c1a2b0d3 + c1a0b2d3 +a0b3c0d3 + c2a0b0d0 +a1b2c3d0 +a2b1c3d0

+a3b3c0d0 +a3b0c3d0 +a0b3c3d0 +a2b0c0d0 +a0b2c0d0 + c2a1b3d0 + c2a2b2d0 + c2a3b1d0

+c1a2b3d0 + c1a3b2d0 + c1a1b0d0 + c1a0b1d0 +a1b1c0d0 +d1c1a0b0 +d1a2b3c0 +d1a2b0c3

+d1a3b2c0 +d1a0b2c3 +d1a1b2c2 +d1a2b1c2 +d1a3b0c2 +d1a0b3c2 +d1a1b0c0 +d1a0b1c0

286 15 Applying SAT-Solvers to Extension Fields of Low Degree

+d1c1a2b2 +d1c1a3b1 +d1a1b1c3 +d1c1a1b3

p3 = a3b3c3d0 + c1a3b3d2 + c3a3b1d2 + c2a2b3d2 +a1b2c3d3 +a2b1c3d3 +a3b3c0d3 +a3b0c3d3

+a0b3c3d3 + c2a1b3d3 + c2a2b2d3 + c2a3b1d3 + c1a2b3d3 + c1a3b2d3 +d0c1a3b3 +d0c2a3b2

+d0c2a2b3 +d0c3a3b1 + c3a0b0d0 +a0b3c0d0 +a3b0c0d0 +a2b1c0d0 +a1b2c0d0 + c1a2b0d0

+c1a1b1d0 + c2a1b0d0 +d1c2a0b0 +d1a0b2c0 +d1a2b0c0 +d1a1b1c0 +d1c1a0b1 +d1c1a1b0

+d2c1a0b0 +d2a0b1c0 +d2a1b0c0 +d3c0a0b0 + c2a0b1d0 + c1a0b2d0 +d0c3a2b2 +d0c3a1b3

+d1a1b2c3 +d1a2b1c3 +d1a3b3c0 +d1a3b0c3 +d1a0b3c3 +d1c2a1b3 +d1c2a2b2 +d2a3b3c3

+d2a2b3c0 +d2a2b0c3 +d2a3b2c0 +d2a0b2c3 +d2a1b2c2 +d2a2b1c2 +d2a3b0c2 +d2a0b3c2

+d2c1a2b2 +d2c1a3b1 +d2a1b1c3 +d2c1a1b3 +d3c1a1b2 +d3c2a3b3 +d3c2a1b1 +d1c1a3b2

+d3c2a2b0 +d3c0a2b2 +d3c1a0b3 +d3c0a1b3 +d3c0a3b1 +d3a3b3c3 +d1c2a3b1 +d1c1a2b3

+d3c3a1b0 +d3c3a2b3 +d3c3a3b2 +d3c2a0b2 +d3c1a3b0 +d3c1a2b1 +d1c1a1b3 +d1a1b1c3

+d3c3a0b1 +d1c2a3b3 +d1c3a3b2 +d1c3a2b3 + c2a3b2d2 + c3a1b3d2 + c3a2b2d2 +d1c1a3b1

+d2c0a3b1 +d2c0a2b2 +d2c0a1b3 +d2c1a0b3 +d2c1a3b0 +d2c1a2b1 +d2c1a1b2 +d2c2a0b2

+d2c2a2b0 +d2c2a1b1 +d2c3a0b1 +d2c3a1b0 + c3a0b0d3 +a1b2c0d3 +a2b1c0d3 +a3b0c0d3

+c2a1b0d3 + c2a0b1d3 + c1a1b1d3 + c1a2b0d3 + c1a0b2d3 +a0b3c0d3 +a1b2c3d0 +a2b1c3d0

+a3b3c0d0 +a3b0c3d0 +a0b3c3d0 + c2a1b3d0 + c2a2b2d0 + c2a3b1d0 + c1a2b3d0 + c1a3b2d0

+d1a2b3c0 +d1a2b0c3 +d1a3b2c0 +d1a0b2c3 +d1a1b2c2 +d1a2b1c2 +d1a3b0c2 +d1a0b3c2

+d1c1a2b2

which is shockingly worse. Therefore, one can see that it is essential that the process

of obtaining these formulas be automated, at least partially, if one is to tackle 10th

degree polynomials over GF(256).

15.6 Using the Algebraic Normal Forms

Each equation is to be independently converted into a set of GF(2) equations.

Once this is done for all equations, the union of these sets of equations is converted

into a SAT problem as described in Chapter 13. Then a SAT-solver is called to

produce a solution or declare unsatisfiability.

We used GF(32) in our experiments. Each equation over GF(32), consists of a

sum of terms (monomials). Each of these monomials is a product of some number of

variables and some number of constants. Using the ANFs of the product operation,

as found in the previous section, we have a logical formula for each of the “bits” or

GF(2) terms of any GF(32) product. Thus, we simply apply these formulas to the

constant(s) and variable(s) present.

Once this is done for each monomial in a polynomial, these formulas can be

simply added, adding them component-wise as 5-dimensional vectors. This is be-

cause the addition operation over GF(32) is just 5-dimensional vector addition

over GF(2). These sums of GF(2)-polynomials are GF(2)-polynomials, and there

should be 5 sums per original polynomial.

These sums now form a GF(2) system of equations, with five times as many

unknowns and equations. That, in turn, can be converted into a SAT-problem via the

15.6 Using the Algebraic Normal Forms 287

techniques found in Chapter 13. In fact, the author simply used his old code, without

modification, to do so.

15.6.1 Remarks on the Special Forms

The product cxyz is sufficient to encode the “special cases” of cx3 and cx2y. For

higher degree formulas, naturally there are even more special cases. As it turns out,

there is much to be gained by having a separate formula for special forms like cx2.

Consider that the formula for cxy in GF(16) given above has 22, 34, 31 and 27 terms

in the expressions for the constant, linear, quadratic and cubic coefficients, or a total

of 114 terms. Instead, if we generate formulas for cx2 we obtain

p0 = c0y0 + c0y2 + c3y2 + c2y3 + c2y1 + c1y3

p1 = c3y3 + c1y0 + c1y2 + c3y1 + c3y2 + c0y2 + c2y1 + c1y3

p2 = c2y0 + c2y2 + c1y2 + c3y1 + c0y3 + c0y1 + c2y3

p3 = c3y0 + c3y2 + c2y2 + c1y3 + c1y1 + c3y3 + c0y3

which has 6, 8, 7, and 7 terms, or a total of 28 terms. When comparing the 114

to the 28, we must also recall that the terms in the general product were degree 3

terms, whereas here we have degree 2 terms. This is because x2 = x in GF(2), or

more simply because 1×1 = 1 and 0×0 = 0. Thus, the fair comparison is 342 total

symbols versus 56 total symbols.

15.6.2 Remarks on Degree

We chose quadratic equations, principally because the logical formula for a

GF(32) quadruple product (multiplication of 4 variables) is huge. In fact, it was

too large to copy down from MAPLE. However, for smaller fields, the 4 product for-

mula was not as bad, and so one could write the converter for cubics as well. Recall,

a quadratic term requires a triple product: a coefficient multiplied by two variables.

It is noteworthy to mention that, by the addition of new variables, any system of

equations can be written as degree 2, regardless of the original degree of the poly-

nomials. This can be done while introducing zero spurious solutions and destroying

zero original solutions. See Section 11.4 on Page 192 for details.

For example, if one had originally a + bcd = 1, then one can say let x = bc,

and one has a + xd = 1 and x = bc as two equations, now of quadratic degree.

One can show that if the degree of the original system of equations is fixed, that

only polynomially many new variables are introduced. One can see that the order

in which these new variables are introduced can have a tremendous impact on the

number required.

288 15 Applying SAT-Solvers to Extension Fields of Low Degree

15.6.3 Remarks on Coefficients

Unlike GF(2) polynomials, the polynomials over GF(2k) (with k > 1) have co-

efficients. Since a formula for a triple product is available, it makes sense for the

first of the three multiplicands to be the coefficient. A shortcut makes the resulting

system of equations smaller. One should simply delete any terms with coefficient

zero. This may sound obvious but in a sparse system, it can be a large savings.

Second, one could imagine 31 extra variables, one for each of the 31 extra con-

stants. These additional variables are fixed to the constants by the insertion of 31

additional equations of the form xi = ci for the constant ci. Then the entire sys-

tem of polynomials can have its coefficients removed and be a series of products of

variables. This is very inefficient as it turns out. Instead, when ci1 or ci2 is needed,

signifying the first or second bit of the constant ci, one should substitute “0” or “1”

as required. Variables permanently set to 0 or 1 are easily handled by a SAT-Solver,

as they are removed early on. See Chapter 14.

For example, if we had the monomial (α2 + α)xy then c0 = 0, c1 = 1, c2 = 1,

c3 = 0, and c4 = 0. Any monomial containing c0, c3 or c4 = 0 in the product formulas

will represent multiplying by 0. This is obviously equal to the 0 monomial, and so

we can remove any term from the system that contains c0, c3 or c4 in this monomial.

In practice, we delete approximately half the monomials from the GF(2) system of

equations this way.

15.6.4 Solving with Gröbner Bases

When solving with a Gröbner Bases algorithm, one need merely state the poly-

nomials to be solved. They form an ideal, and all polynomials in that ideal are zero

on a set of points called the variety, or set of solutions. If there is only one point in

this set, then the Gröbner Bases will look like x1 = 1, x2 = 0, etc. . . (or equivalently

x1 +1,x2, . . .)
One problem is that we are only interested in solutions that have values in the

coefficient field. Taking GF(32) as an example, there are 31 elements in the mul-

tiplicative group, which has 1 as its identity. Therefore, by group theory and, in

particular, Lagrange’s Theorem x31 = 1, or alternatively x32− x = 0. The second

equation has the added property that it is true for 0, the only field element excluded

from the multiplicative group. (This is also sometimes called Fermat’s Little Theo-

rem).

Thus, an element x ∈ GF(2) is in the field GF(32) if and only if x32− x = 0.

We can add an equation of this form for each variable in the polynomial system.

Then, finally, we will be restricted to solutions in the coefficient field, as desired.

However, 32 is a relatively high degree, and this is why the Gröbner Bases may

have performed badly in these experiments.

In Gröbner Bases approaches, it is important to note the choice of variable order-

ing. We used degrevlex, on the advice of M. Albrecht.

15.7 Experimental Results 289

15.7 Experimental Results

The experimental results can be found in the table on Page 289.

Special Symbols in Results Table:

The following special indicators are used in the results table. First, “crashed”

signifies that the software aborted due to a lack of memory, usually by attempting

to allocate 30 gigabytes. Second, “> 70 mins” signifies that the software exceeded

the time limit that etiquette requires on a shared machine. Third, “no trial” signifies

that since a smaller version of the same problem either crashed or timed out, this

size was not tried.
Num Vars Num Eqns β or Sparsity MAGMA SINGULAR SAT

2 2 1.0 0.02 sec 0.01 sec 0.01 sec

3 3 1.0 0.04 sec 0.04 sec 0.07 sec

4 4 1.0 0.43 sec 423.48 sec 213.56 sec

5 5 1.0 4.32 sec >75 mins 19278.9 sec

6 6 1.0 42.78 sec no trial >75 mins

7 7 1.0 1139.8 sec no trial no trial

8 8 1.0 crasheda no trial no trial

9 9 1.0 no trial no trial no trial

4 4 0.2 0.03 sec 0.08 sec 0.02 sec

5 5 0.2 0.55 sec 14.89 sec 61.89 sec

6 6 0.2 10.04 sec 6.74 sec 0.03 secb

7 7 0.2 52.89 sec >70 mins 4111.71 sec

8 8 0.2 crashedc no trial >75 mins

9 9 0.2 no trial no trial no trial

4 2 1.0 20.39 sec >70 mins 0.14 sec

5 3 1.0 192.69 sec no trial 20.51 sec

6 3 1.0 >70 mins no trial 17.44 sec

7 4 1.0 no trial no trial 5388.9 sec

8 4 1.0 no trial no trial no trial

Experimental Results: MAGMA, SINGULAR, and Mini-SAT.

a At one point the process had allocated 29.9 Gigabytes of RAM.
b This phenomenon remains unexplained, but is reproducible on repeated trials.
c At one point the process had allocated 24.9 Gigabytes of RAM.

290 15 Applying SAT-Solvers to Extension Fields of Low Degree

Underdefined Systems of Equations

When there are fewer equations than unknowns, i.e. m < n, then one can expect

many solutions over a finite field, and infinitely many over the rational numbers.

This concept cannot be made precise, because imagine 10 equations over 100 un-

knowns, with an 11th equation being x2 = 2. Then this 11th equation is not satisfi-

able by any rational number, and so there are no rational solutions to that equation,

and as a result to the entire system of equations. But vaguely, the intuition remains

that n−m variables will remain “free,” or unconstrained, and so we anticipate qn−m

solutions.

The m = 7 case took the SAT-solver just under 90 minutes, but the m = 6 and

m = 5 cases were extremely trivial for the SAT-solver, both taking less than half a

minute. For comparison, SINGULAR could not handle even the m = 4 case in less

than 70 minutes. On the other hand, MAGMA took over 3 minutes for m = 5, and

could not solve m = 6 in less than 70 minutes.

There are several reasons to expect SAT-solvers to do well in this circumstance.

First, SAT-solvers are required to find only one solution, where as a Gröbner Basis

encodes enough information to reconstruct all solutions. In GF(32), there might be

very many solutions indeed. Second, the number of variables, number of clauses

and total length of all the clauses would be reduced because m is reduced (see Sec-

tion 13.1 on Page 251).

Third, for a Gröbner Bases method, after the “field equations” x
q
i − xi are intro-

duced for all xi, we are restricted to entries in the field GF(q), as desired. Thus,

there are only qn candidate solutions (possible assignments of values from GF(q)
to n variables) and so we know we will finish with finitely many solutions. It is part

of the folk-lore of Gröbner Bases methods that the most difficult problems are those

that have finitely many but very many solutions. The Gröbner Basis used to describe

such a solution set would necessarily be very complicated.

On the Efficacy of the Translation

Earlier, we claimed that this method is “efficient”, and it is important to address

what is meant by that. We know that very large polynomial systems are very diffi-

cult to solve in general, because of the NP-Completeness of the problem (see Sec-

tion 11.5 on Page 199). Systems like MAGMA, and SINGULAR exist, and can solve

problems of certain sizes. Here, we have shown that via this method of conversion,

a SAT-solver can solve sizes that MAGMA and SINGULAR cannot. Furthermore, the

conversion takes almost no time (a few seconds, far too short to measure accurately),

versus the long solution times given in Table 15.7. There may be better methods.

15.7 Experimental Results 291

Larger Fields

We can see that with GF(32) there appears to be a threshold of feasibility at 5

variables and 7 variables, for the β = 1 and β = 1/5 cases, which implies 25 to 35

bits of unknowns. At 10 bits per variable, in GF(1024), we can therefore expect the

threshold of feasibility to be very roughly 3 variables—in other words the technique

would be totally useless. It is unclear where the region of feasibility is, especially as

both the SAT-solver communities and the Gröbner Bases communities continue to

produce new algorithms, as well as refinements to old ones.

15.7.1 Computers Used

For MAGMA and SINGULAR, we used a a large-scale computer provided by the

National Science Foundation for numerically-intensive research on SAGE. It is a

special-purpose 64-bit computer built by Western Scientific that has 64GB of RAM

and 16 AMD Opteron cores. For MiniSAT, we used 5 ordinary PCs with 1 gigabyte

of RAM and one 2 GHz processor, running Linux, at the University of Maryland

Mathematics Department.

15.7.2 Polynomial Systems Used

The polynomials were generated randomly, and were degree 2. Every coefficient

was present with probability β , and if present, had a coefficient chosen uniformly

at random from the 31 available non-zero coefficients in GF(32). The numbers of

equations, unknowns, and β are listed in the table.

First, we analyzed the m = n case. This was done with β = 1.0 for dense systems,

and β = 0.2 for sparse systems. While this may sound like a very pessimistic β for

a sparse system, as linear systems often have β = 1/1000, one should note that in

an n variable quadratic system, there are only (n2 +3n+2)/2 possible coefficients.

Thus with n = 5, we would have 21 possible coefficients, and a β much below 0.1
would allow for an all-zero equation somewhere in the system. As was the case

with GF(2), the SAT-solver method does better in the sparse case than the dense

(see Table 15.7 on Page 289). This is also the case with Gröbner Bases approaches,

in fact the difference is rather dramatic. For example, compare the running times for

m = 7 = n on MAGMA, namely 83 seconds versus 1140 seconds.

Note that SAT-solvers need only find one solution, while Gröbner Bases solutions

find a basis for the set of solutions, which surely would be complicated if there are

several solutions. For this reason, we decided to try n = 2m, a system with half as

many equations as variables, rounded up. One would expect many solutions in this

case, but still finitely many because we are in a finite field. As we mentioned earlier,

SAT-solvers did much better than expected, but of course they only find 1 solution.

292 15 Applying SAT-Solvers to Extension Fields of Low Degree

Also, SINGULAR did spectacularly badly with this problem, for example requiring

more than 70 minutes for 4 variables and 2 equations!

Lastly, we should mention that we forced the existence of at least one solution

via the technique described in Section 13.5.1 on Page 255.

15.8 Inverses and Determinants

We return to GF(16) and M4(GF(2)), i.e. the ring of 4×4 matrices with entries

in GF(2), as our example. Though it is not necessarily relevant to polynomial sys-

tems of equations, the determinant or inverse of the matrix M = a0I +a1A+a2A2 +
a3A3 can be calculated.

15.8.1 Determinants

The formula for the determinant is

detM = a0a1a2a3 +a0a1a2 +a0a1a3 +a0a2a3 +a1a2a3 +a0a3 +a0a1

+a0a2 +a1a2 +a1a3 +a2a3 +a0 +a1 +a2 +a3

Further examination yields that this is always 1, unless 0 = a0 = a1 = a2 = a3.

However, this should make sense as we are in a field, and so each non-zero element

is required to have a multiplicative inverse. Thus every non-zero element’s matrix

must have a determinant that is non-zero. Since the determinant is from the base

field, it must be 1, the only non-zero element in GF(2).

15.8.2 Inverses

Now we can inquire as to the inverse of M, and we can do this in the form

(detM)M−1, as this means multiplying by one, (otherwise M−1 does not exist).

This trick of multiplying by detM simplifies the equations. The matrix formed by

(detM)M−1 is sometimes called the “adjugate” or “classical adjoint” matrix, be-

cause the conjugate transpose of M is the usual definition of adjoint for matrices in

Mn(C). See Section 8.3.1 on Page 120.
We obtain the 4× 4 matrix shown in Figure 15.1 on Page 293. Reading off the

four cells that give us the basis coefficients from the usual spots, we learn that

(
a0 +a1α +a2α2 +a3α3

)−1
= (a0 +a1 +a2 +a3 +a1a2 +a0a2 +a0a1a2 +a1a2a3)

+(a3 +a0a1 +a0a2 +a1a2 +a1a3 +a0a1a3)α

15.8 Inverses and Determinants 293








a0 +a1 +a2 +a3 +a1a2 +a0a2 +a0a1a2 +a1a2a3 a1 +a2 +a3 +a0a3 +a1a3 +a2a3 +a1a2a3

a3 +a0a1 +a0a2 +a1a2 +a1a3 +a0a1a3 a0 +a0a2 +a0a3 +a1a2 +a1a3 +a2a3 +a0a1a2

a2 +a3 +a0a1 +a0a2 +a0a3 +a0a2a3 a3 +a0a1 +a0a2 +a1a2 +a1a3 +a0a1a3

a1 +a2 +a3 +a0a3 +a1a3 +a2a3 +a1a2a3 a2 +a3 +a0a1 +a0a2 +a0a3 +a0a2a3

Column 1 Column 2

a2 +a3 +a0a1 +a0a2 +a0a3 +a0a2a3 a3 +a0a1 +a0a2 +a1a2 +a1a3 +a0a1a3

a1 +a0a1 +a0a2 +a1a3 +a2a3 +a0a2a3 +a1a2a3 a2 +a1a2 +a0a3 +a1a3 +a0a1a3 +a0a2a3

a0 +a0a2 +a0a3 +a1a2 +a1a3 +a2a3 +a0a1a2 a1 +a0a1 +a0a2 +a1a3 +a2a3 +a0a2a3 +a1a2a3

a3 +a0a1 +a0a2 +a1a2 +a1a3 +a0a1a3 a0 +a0a2 +a0a3 +a1a2 +a1a3 +a2a3 +a0a1a2

Column 3 Column 4








Fig. 15.1 The Inverse of the Matrix M = a0I +a1A+a2A2 +a3A3

+(a2 +a3 +a0a1 +a0a2 +a0a3 +a0a2a3)α2

+(a1 +a2 +a3 +a0a3 +a1a3 +a2a3 +a1a2a3)α3

and therefore we have an efficient way of calculating the inverse of field elements.

15.8.3 Rijndael and the Para-Inverse Operation

In order to create an operation that is relatively complex, the Rijndael cipher

[89], which later became AES [10], uses an operation like an inverse for elements

of GF(256). For non-zero inputs, it is the inverse, and for the zero input, the output

is zero. This is called inv0 by some authors in cryptanalysis, but we denote it here

as the para-inverse. (Note that the term pseudo-inverse is already taken, and means

(AT A)−1AT for rectangular matrices—see Section 7.7.1 on Page 102).

This operation can be represented by the inversion formulas in previous subsec-

tion, because if a0 = a1 = a2 = a3 = 0 is the input, the answer comes out 0, even

though this violates the assumptions under which the formula was derived. Thus the

previous formula is not only a GF(16) inverse, it also can serve as the para-inverse.

Niels Ferguson, Richard Schroeppel and Doug Whiting have made a continued

fraction representation of the AES [113], which could be represented with this op-

eration. As for Rijndael itself, we show here in our experiments a threshold of feasi-

bility of roughly 25 to 35 bits depending on sparsity. But, over GF(256) this means

3–4.5 variables. Thus, there is at present no danger of the Rijndael/AES cipher being

broken in this way.

On the other hand, Vincent Rijmen and Elisabeth Oswald [201] have a paper

which shows representations of the AES over GF(16) and GF(4). The author has

not explored the implications of this, but it seems to be the case that even in GF(4),
only 12 to 18 variables are available and it would be extremely hard to imagine how

to represent something as complex as a block cipher in that way.

294 15 Applying SAT-Solvers to Extension Fields of Low Degree

15.9 Conclusions

The distinguishing features of this class of problems are that first, the polynomi-

als are over fields of characteristic two, and second, that we are only interested in

the base field solutions (sometimes called rational points). This is natural in crypt-

analysis, as bits are GF(2) elements and a fractional bit or irrational bit makes little

sense. Without these properties, SAT-solvers would be of little use.

Another property is that we anticipate one solution (key) in cryptanalysis, and so

finding the first available solution means finding all solutions. Rarely are there two

keys under which the same plaintext will become the same ciphertext, so the risk of

finding an undesired solution among many possible solutions is inapplicable. There

is an interesting connection to SAT lower bounds, see Section 13.4.2.1 on Page 251.

In the case of finitely many but several solutions, a Gröbner Basis must describe

all of the finitely many solutions, and so would be rather complex, whereas SAT-

solvers stop at the first solution. Note that infinitely many solutions in a finite field

is impossible, unless there are infinitely many variables, which we do not consider

here. Of course, if m ≈ 2n, then there are many solutions, and so we saw a greater

performance gap in this case. Furthermore, if one merely wishes to classify a system

of equations as “consistent” or “inconsistent”, then one must either verify unsatisfi-

ability or find one single solution—there is no need to find all solutions.

And so given these constraints, especially the requirement of adding the field

equations

x2n

i − xi = 0

for GF(2n), renders Gröbner Bases approaches disadvantaged compared to SAT-

solvers.

While there is a wealth of theory about Gröbner Bases algorithms, far less is

known about the Grasp algorithm and modern SAT-Solvers. Clearly, more work in

this area is waiting to be done.

Despite the advantages of SAT-solvers, MAGMA was always faster when it did

not crash for m = n. However, the memory required was substantial, and so for large

problems where the user is patient, SAT-solvers will be slow but will work. On the

other hand, MAGMA might require too much memory to operate. It is also note-

worthy to realize that MAGMA is actually quite expensive, whereas SINGULAR and

MiniSAT are free. The performance differences between SINGULAR and MAGMA

in the table are interesting, and may justify the use of expensive software in research

on this topic.

15.10 Review of Extension Fields 295

15.10 Review of Extension Fields

15.10.1 Constructing the Field

Recall that the field GF(pr = q) is built around a finite field GF(p) where p

is prime, and an “imaginary” element α which is the root of a monic irreducible

polynomial of degree r. Let the polynomial be π(x), and note that the coefficients

of π(x) come from GF(p). This polynomial allows for an “arithmetic rule” for the

field, or alternatively, one can think of working in the polynomial ring GF(p) “mod”

the principle ideal generated by π(x).
Note that monic just means the leading coefficient is 1. If it were not 1, we could

simply divide by it and get a monic polynomial. For a polynomial

π(x) = a0 +a1x+a2x2 +a3x3 + · · ·+ar−1xr−1 + xr

the arithmetic rule is merely

αn =−a0−a1α−a2α2−a3α3−·· ·−ar−1αr−1

and multiplying both sides by α gives “rules” for higher powers of α . Thus any

(division-free) expression in the field would look like a polynomial of degree at

most r−1, because any αr or higher degree terms can be rewritten with the above

rule.

Example

To be very plain, we work with expressions that are degree r− 1 polynomials,

and with coefficients in the field GF(p). A typical element might be α + α2 and

another one might be α + 1. Multiplying them yields α3 + 2α2 + α . If r ≥ 3, then

the “rules” defined above would allow us to rewrite the expression in a lower degree.

Thus we have defined a ring, since we can add, subtract and multiply. Can we

define a division? Observe

0 = a0 +a1x+a2x2 + · · ·+ar−1xr−1 + xr

⇔ a0 =−a1x−a2x2−·· ·−ar−1xr−1− xr

⇔ 1 =
−a1

a0
x+
−a2

a0
x2 + · · ·+ −ar−1

a0
xr−1 +

−1

a0
xr

⇔ 1 = x

(−a1

a0
+
−a2

a0
x+ · · ·+ −ar−1

a0
xr−2 +

−1

a0
xr−1

)

we can simply substitute x = α and get an expression (in the large parenthesis) for

the multiplicative inverse of α . In any commutative ring, the multiplicative inverse

296 15 Applying SAT-Solvers to Extension Fields of Low Degree

is1 unique. Furthermore, this is an algorithm for inverting any particular element of

the field. On the other hand, there may be simpler ways to invert elements, and one

is given in Section 15.8.2 on Page 292. Of course, this was only possible because

a0 6= 0. But if a0 = 0 then π(x) would not be irreducible (it would be divisible by

x). To invert some other element β = b0 + b1α + · · ·+ br−1β r−1, simply substitute

β for x in the formula above. Whatever is found inside of the big parentheses is the

multiplicative inverse of β .

Now we can expand our statement to say that not only is every division-free

expression in the field representable as a polynomial of degree at most r− 1, but

using the above method of carrying out division2, we know that all expressions can

be written as polynomials of this bounded degree.

Since we can add, subtract, multiply and divide, we now have a field. We have

shown that a degree r−1 representation for the field is sufficient, but we must also

show it is necessary!

We now know that having 1,α,α2, . . . ,αr−1 is sufficient. How do we know that

we cannot dispense with any of those? Suppose there was a formula to find αr−1 in

terms of the others. For example,

k0 +αk1 +α2k2 + · · ·+αr−2kr−2 = αr−1

then the function given by

f (x) = k0 + xk1 + x2k2 + · · ·+ xr−2kr−2− xr−1

has a root at x = α .

Since both π(α) = 0 = f (α) then 0 is a root of the gcd of π(x) and f (x), which

we can denote g(x). Since g(x) has a root, it is not degree 0, and so it is some degree

1 or higher polynomial. Also, because it is the greatest common divisor this means

that it divides π(x). But since we required that π(x) be irreducible, the only divisors

are trivial—constants and scalar multiples of itself. We know g(x) is at least degree

1 so it must be a scalar multiple of π(x). But then g(x) is degree r and f (x) is degree

r− 1, and yet because g(x) is the gcd of f (x) and π(x) it must divide f (x). How

can a degree r polynomial divide a degree r polynomial? Thus, no such f (x) may

exist, and there is no formula for αr−1. We cannot dispense with the αr−1 term. For

any other term, e.g. αd for 0 < d < r−1, we could simply replace f (x) above with

the arbitrary polynomial of degree d and the same proof would work. We cannot

dispense with any of these terms.

Nonetheless, what if there were a different basis that had fewer terms? We’ve

only shown there is no subset of this basis which works. It is well known that the

basis of a vector space is the same size as any other basis of the same vector space.

Since the extension field is a vector space over the finite field (simply by “forgetting”

the multiplication between extension field elements and working with addition and

1 Suppose ab = 1 and ac = 1. Then multiplying the second by b gives bac = b or 1c = b thus b = c.
2 More precisely, finding the multiplicative inverse of the denominator and just multiplying.

15.10 Review of Extension Fields 297

scalar multiplication by base field elements) then we know no basis is smaller then

our basis.

How many objects are in our extension field? For all possible terms of our field

we have p choices for the 0th degree coefficient, p choices for the first degree, . . . ,

up to p choices for the r− 1th degree coefficient, therefore we have pr objects in

our field. We invoke the theorem [101, Ch. 13.2] that all finite fields of the same size

are isomorphic, and so we know we have constructed the finite field of size pr, or

GF(pr).

Theorem 91. Let GF(p) be the finite field of characteristic p and GF(pr) an exten-

sion field of size pr. Let f (x) be an irreducible polynomial of degree r from GF(p)[x]
and let α represent one of its roots. The field GF(pr) is isomorphic to

GF(p)[x]/(f (x))

15.10.2 Regular Representation

The above is a construction of a finite field, and works for any finite field that is

not of prime size. Of course, for prime sizes the field is simply Zp, and what could be

simpler. And while the polynomial representation above is good for many purposes,

there are other representations of finite extension fields. The one used in this chapter

is that of r× r matrices over the base field GF(p), which we write Mr(GF(p)).
For a polynomial

π(x) = a0 +a1x+a2x2 +a3x3 + · · ·+ar−1xr−1 + xr

the companion matrix is

M =












0 0 0 · · · 0 a0

1 0 0 · · · 0 a1

0 1 0 · · · 0 a2

0 0 1 · · · 0 a3

...
...

...
. . .

...
...

0 0 0 · · · 1 an−1












and this matrix has several properties. First, its entries are considered over the field

that the polynomial’s coefficients come from, or in this case GF(p). Second, the

minimal and characteristic polynomial of the matrix are both π(x) provided that

π(x) is irreducible. This means that

a0Ir×r +a1M +a2M2 +a3M3 + · · ·+an−1Mr−1 +Mr = 0r×r

where Ir×r and 0r×r are the identity and zero matrices from Mr(GF(p)).

298 15 Applying SAT-Solvers to Extension Fields of Low Degree

And therefore, mapping 1 in the field GF(pr) to the identity matrix, and the

primitive element α to the matrix M makes a map from f : GF(pr)→Mr(GF(p)).
This map is an isomorphism, which can be more plainly seen by realizing that

b0 +b1α +b2α2 + · · ·+bn−1αn−1 7→ b0Ir×r +b1M+b2M2 +b3M3 + · · ·+bn−1Mr−1

and that the addition and multiplication rules of matrices do what they should to the

matrices.

What is amazing is that given any r× r matrix we can easily recover the field

element that it represents.

15.11 Reversing the Isomorphism: The Existence of Dead

Give-Aways

We now will prove the following theorem

Theorem 92. Let GF(p) and GF(pr) be finite fields of size p and size pr, and let

π(x) be an irreducible polynomial of degree r over GF(p) given by

π(x) = a0 +a1x+a2x2 +a3x3 + · · ·+ar−1xr−1 + xr

and α a root of π(x). Finally, let

M =












0 0 0 · · · 0 a0

1 0 0 · · · 0 a1

0 1 0 · · · 0 a2

0 0 1 · · · 0 a3

...
...

...
. . .

...
...

0 0 0 · · · 1 an−1












Then the map given by

1 7→ Ir×r, α 7→M, α2 7→M2, . . . , αr−1 7→Mr−1

will have, for each d1 ∈ 0,1,2, . . . ,r−1 an entry i j such that for any d2 ∈ 0,1, . . . ,r−
1,

(Md1)i j = 1 and (Md2)i j = 0 provided that d2 6= d1

where we construct here that i j = (d + 1,1). We call such an entry a “dead give-

away”.

The only reason this proof is challenging is that we are taking about a matrix M

and its powers, but we don’t know the values in the right-hand column. It turns out

because d never gets very large (never exceeds r− 1), that the “mystery column”

never affects the leftmost column, and this is the heart of the proof. Each of the

steps may take a moment of thought, and so we have numbered them.

15.11 Reversing the Isomorphism: The Existence of Dead Give-Aways 299

Proof. 1. First, let us define Ii as those r× r matrices over the base field which

have the leftmost i columns as all zero. Thus Ir consists only of the zero matrix,

and I1 those with the leftmost column as all zero. We define I0 to be all r× r

matrices (over the base field), i.e. in Mr(GF(p)).
2. It is easy to see for any matrix M1 ∈Mr(GF(p)), and any matrix M2 ∈Ii that

M1M2 ∈Ii. Furthermore, Ii is closed on addition. Thus Ii is a right ideal.

3. The ideals Ix ⊂ Iy if and only if x ≥ y. More plainly, if M ∈ Ix then M ∈
Ix−1,Ix−2, . . . ,I0.

4. Decompose M as follows

M =












0 0 0 · · · 0 a0

1 0 0 · · · 0 a1

0 1 0 · · · 0 a2

0 0 1 · · · 0 a3

...
...

...
. . .

...
...

0 0 0 · · · 1 an−1












=












0 0 0 · · · 0 0

1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0












︸ ︷︷ ︸

A

+












0 0 0 · · · 0 0

1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0












︸ ︷︷ ︸

B

5. B ∈In−1, and thus B j ∈In−1 for all j > 0.

6. For any matrix M, the matrix AM is just the matrix M but shifted down one row,

with a row of zeros on the top, and the last row deleted.

7. In particular, if M ∈Ik then AiM is in Ik also, for i≥ 0.

8. For any matrix M, the matrix MA is just the matrix M but shifted left one col-

umn, with a row of zeros on the right, and the left-most column deleted.

9. In particular, if M ∈Ik then MAi is in Ik−i also, for k ≥ i≥ 0.

10. Furthermore, BAk ∈Ir−1−k, for r−1≥ k ≥ 0

11. The product (A + B)d is equal to the sum of all possible length-d codewords

from the alphabet {A,B}, each taken exactly once. Thus

(A+B)4 = AAAA+AAAB+AABA+ABAA+BAAA+AABB

+ABAB+BAAB+ABBA+BABA+BBAA+ABBB

+BABB+BBAB+BBBA+BBBB

⋆ This is the metaphor for Pascal’s Triangle over a non-commutative ring.

12. For any codeword of length d, if it contains a B, then let the right-most ap-

pearance of B be the position j, where 1 is the left-most and d is the right-

most. Thus, the d− j remaining entries are all A. Therefore, since BAd− j is in

Ir−1−(d− j) = Ir−d−1+ j, then the codeword is in Ir−d−1+ j also, because Ii is

a right-ideal for all i.

13. For any codeword of length 0 < d < r, if it contains a B, then the position of B

is 0 < j < r. And thus r− d > 0 or n− r− 1 ≥ 0 and finally r− d− 1 + j ≥ 1

since 1≥ j ≥ d so the codeword is in I1.

300 15 Applying SAT-Solvers to Extension Fields of Low Degree

14. In the summation (A+B)d−Ad , with 0 < d < r the “all A codeword” has been

removed, and so every codeword contains a B. Since they all contain a B they

are all in I1 and therefore their sum is also in I1.

15. Because for 0 < d < r, we know (A + B)d − Ad has an all-zero left column

(because it is in I1), then surely (A+B)d and Ad are equal in the left column.

16. Trivially, (A + B)0 and A0 are equal in the left column, because they are both

the identity matrix.

17. Finally, we can conclude that (A + B)d and Ad are equal in the left column for

0≤ d < r.

18. The left column of Ad has a 1 in position d +1 and a zero everywhere else, for

0≤ d ≤ r−1.

19. Thus, finally, we conclude that Md has a 1 in position (d + 1,1) and a zero in

all other entries of column 1.

⊓⊔

Thus, we see there will always be “a dead give-away” in each matrix for

1,α,α2, . . . ,αd−1 in the field GF(2d).

Appendix A

On the Philosophy of Block Ciphers With Small

Blocks

The purpose of this appendix is to discuss the philosophical point of whether

or not attacks on block ciphers should be considered faster than brute force if they

are faster than exhaustive search of the key space (which we believe) or alterna-

tively, faster than exhaustive search of the key space or plaintext space, whichever

is smaller. Related questions include

• If the “code-book” of the cipher is known (defined below), would anyone still be

interested in finding the key?

• Are there block ciphers with very small plaintext spaces, but very large keys?

And what must be true for them to be secure?

• And, can the application in which a block cipher is used change the standard for

what is an interesting attack?

We hope that these few pages will stimulate some thought on the matter. They

originally appeared in [83]. In the end, however, the conclusions are all just a matter

of opinion.

A.1 Definitions

Abstractly, a block cipher is a function E : K×P→C where K is the keyspace, P

is the plaintext-space and C is the ciphertext-space. In practice, these are bit strings,

and one can rewrite this as

E : {0,1}ℓk ×{0,1}ℓP →{0,1}ℓC

The stereotype is that ℓk = ℓP = ℓC, but this is almost never the case in practice,

as shown by the examples in Table A.1.

The ciphers with ℓP < ℓk have several interesting properties not shared by those

with ℓP ≥ ℓk. This question has not received much attantion in the cryptographic

community so far, and the particularities of the case ℓP < ℓk become important when

301

302 A On the Philosophy of Block Ciphers With Small Blocks

Table A.1 Block Ciphers, with their Block-Lengths and Key-Lengths

Cipher ℓP = ℓC ℓk

IDEA 64 128

DES 64 56

Two-key Triple-DES 64 112

AES 128 128 or 192 or 256

Two-Fish 128 128 or 192 or 256

Keeloq 32 64

Blowfish 64 32, 40, 48, . . . , 432, 440, or 448

ℓP is small, for example in Keeloq. We believe that it is important to understand this

somewhat curious situation better.

Let the code-book of a cipher E under a key k be the set of all 2ℓP pairs (P,C)
such that E(k,P) = C. If 2ℓP < 2ℓk , it takes less time to compute the entire code-

book than to do the exhaustive key search. Therefore, a natural question would be

why, precisely, would one want to recover the key, if it is possible to have the entire

code-book? From the point of view of theory and security models, this question was

recently studied by Pornin and Granboulan in Section 5 of [128].

In this discussion we look at it in a similar way but from the point of view of

practical real-life applications and their security. We will give several examples of

such applications.

A.2 Brute-Force Generic Attacks on Ciphers with Small Blocks

There are two major points of view on block ciphers with very small blocks.

Point of View 1: Theoretical

In a theoretical perspective, we can assume that the adversary is very powerful

and has oracle chosen-plaintext access to the cipher and very large (usually unre-

alistic) quantity of memory. Then if the block size is small, one can judge that the

security of the block cipher is 2min(ℓk,ℓP), and once the adversary recovers and is

able to store the whole code-book, one can consider that the adversary has no in-

terest in actually recovering the original key, though from a scientific point of view,

of course, the key-recovery process is interesting in its own right. In practice, even

in this extreme scenario, the actual key recovery can be very valuable because it

can lead to a master key (discussed below, but using one is a very common practice

in industry) and having this key would compromise the security on a much wider

scale.

A.3 Key Recovery vs. Applications of Ciphers with Small Blocks 303

Point of View 2: Practical

Consider a known-plaintext attack, and even if the block size is vey small the

known-plaintext attack is not equivalent to a chosen-plaintext attack, not only be-

cause the privilege of choice might not actually exist in practice, but more im-

portantly because not all plaintexts actually arise in real life (there is often some

padding and a specific probability distribution of possible data). Here the adversary

can recover a number of plaintext-ciphertext pairs, for example up to 50% of all

possible pairs, but he cannot hope to recover all pairs. More importantly, the utility

value of pairs he does not have may be very large, while the utility value of pairs

he already has might be very small. Here the key recovery allows the adversary to

have all possible pairs, some of which are potentially very valuable, or to recover a

master key, which might be even more valuable.

Summary

In the first (theoretical) scenario the security of the block cipher is 2min(ℓk,ℓP),

while in the second scenario, the security is 2ℓk regardless of the block size. The

next section tries to find real-world analogs for these ideas.

A.3 Key Recovery vs. Applications of Ciphers with Small Blocks

In this section, we present several practical application scenarios which illustrate

the importance of key recovery for ciphers with small blocks and a larger key size.

This is meant to motivate further detiled study of key recovery techniques in ciphers

such as Keeloq.

For the reader in a hurry, one might want to skip to the last paragraph of Scenario

Seven, which makes the argument most strongly.

Scenario One: LORI-KPA/LORI-CPA

Consider the notion of Left-or-Right-Indistinguishability in either the Known-

Plaintext Attack, or Chosen-Plaintext Attack models [40]. There are two plaintexts,

either known to the attacker, or chosen by the attacker, which we will denote as

“active plaintexts”. The attacker can then make “polynomially many” queries1, sub-

mitting any plaintexts of his choice for encryption, but not the active plaintexts. We

1 There must exist a polynomial p(x) such that the number of queries is ≤ p(k), where k is a

security parameter, almost always the length of the secret key.

304 A On the Philosophy of Block Ciphers With Small Blocks

can translate this definition to a “concrete security” treatment when the security pa-

rameter (key length) is fixed, and allow the attacker to request the encryption of any

plaintext, except the two which are active. Therefore one can consider that the code-

book is actually known to the adversary, for all but two values. Such a scenario is

also explicitly considered in Section 5 of [128].

This is equivalent to a real-life cryptographic attacker knowing the entire code-

book, except for two entries (the active plaintexts). One might ask, if in this situa-

tion, he or she would have any reason to engage in key-recovery.

We note that if a message has been observed in transmitted traffic, and it is not

found in the code-book, then it is clearly one of the remaining two. This message

can be of vital importance, yet it might not be possible to determine which of the

remaining two it is. Key recovery would accomplish this.

If the reader doubts the practicality of this scenario, where most of a code-book

is known and only a few values remain, consider the following. According to David

Kahn [145], in 1942, the United States decrypted many messages encrypted with

the famous “Purple” cipher, forecasting an attack at “AF”. There were only a few

possible targets, and so a very short list of candidates was made and Midway Island

seemed the most reasonable choice. The Americans, however, needed confirmation

to be 100% confident, because they planned to strike with every available aircraft

carrier, and a mistake would be a tremendous waste of scarce resources. The US

Navy decided to send a message about the water supply on Midway, using their

own code that they knew to be broken by the Japanese. Very soon another message

about “AF” was sent over Japanese channels, describing the problem with the wa-

ter. Consequently, overwhelmeng force was sent to Midway and Japan’s offensive

power at sea was crippled, which had a pivotal impact on winning World War II.

Scenario Two: Manufacturer Sub-Keys

One usage of Keeloq in automobiles could be to take a 32-bit string called a

“manufacturer key”, and a 32-bit string called a “per-automobile” key, and concate-

nate them to form a 64-bit key for each automobile (see [234]). This means that the

automobile manufacturer can produce a machine to recover the key for any particu-

lar vehicle in 232 operations, but all other attackers cannot, if the total key remains

unknown for every automobile. If the code-book is known for one automobile, and

not its key, then that specific automobile can be stolen. But if a key recovery is then

performed on a single automobile, both keys are recovered and thus every automo-

bile of that manufacturer could then be much more easily stolen, using 232 rather

than 264 test encryptions per automobile.

Incidentally, a more secure way of accomplishing the above is to generate a

“manufacturer key” kM randomly, and let the per automobile key be ks = E(kM,s),
where s is the serial number of the car. Here, there would exist no obvious attack,

and key recovery against one automobile does not help on any other. Also, the man-

ufacturer can easily recover the key of any particular automobile later.

A.3 Key Recovery vs. Applications of Ciphers with Small Blocks 305

Scenario Three: Short but Private Data

Suppose short strings must be encrypted, but with high security. In the USA,

social security numbers (SSN’s) are 9 digits, and this can be encoded in Binary

Coded Decimal (BCD) with 36 bits (or 30 bits with pure binary). Of course, one

can use AES (E with ℓk = ℓP = ℓC = 128) and encrypt the 36 bits padded with 92

bits of zeroes or a fixed padding, or even with a padding that is a function of the

SSN. Most padding functions are not keyed, but we could even imagine one that

depended on the block cipher key. If πk(x) is the padding function, then we have

C = E(k,πk(x))

but then this defines a function E ′(k,x), given by the above functional composition,

with ℓP = 36, ℓC = 128, ℓk = 128. We call this the induced block cipher. This is

related to the idea of “nuggets” as presented in [35].

Scenario Four: Assigning Account Numbers

A bank or a stock-broker can assign random-looking account numbers to unique

identifiers such as customer name plus date of birth or social security number, en-

crypted with a block cipher. As we saw in the previous example, short plaintexts,

especially without keyed padding, induces a new block cipher with a tiny code-

book but large key. In this application it is not clear that every single new plaintext-

ciphertext pair is valuable to the attacker, and one single pair can be worth much

more than any other pair (if, for example, a particularly wealthy customer can be

targeted). One can imagine that knowing all of the code-book, except one particular

entry, could be useless while knowing that one entry alone could be very valuable.

Scenario Five: Scratch Cards and Software Serial Numbers

Block ciphers with small blocks are used by industry to generate so-called scratch

cards, that are used for example to obtain calling credit on a mobile phone. The

permutation is used to associate random-looking and unique (hard to forge) numbers

on scratch cards, to unique account identifiers that are typically an encryption of the

numbers 0, 1, 2, 3, 4,. . . The same method is sometimes used to obtain unique serial

numbers for software. This avoids keeping a database of all existing serial numbers

which can be replaced by a short piece of code or a secure cryptographic hardware

token with embedded key.

306 A On the Philosophy of Block Ciphers With Small Blocks

Scenario Six: Random Number Generation

A more complex version of the above follows. Suppose one wants to generate a

series of random numbers, for a cryptographic or other use. One common technique

is to generate a secret key k and initial value i0. Then the series ai = E(k, i0 + i) will

be random in the sense that any algorithm that can distinguish it from random with

certain success probability will distinguish Ek from a random permutation in similar

time and with similar chance of success. These statements can be made more exact

but we do not need that here.

It is better if i0 is random, but often it is fixed in advance or known (e.g., the

date). Often, it is simply all zeroes. In this case, if the highest n such that an is

needed has n ≤ 2m, all the plaintexts lie in the range {0,1, . . . ,2m−1}. Thus only

the m least significant bits of the plaintext matter (in this application) and the bits

m + 1,m + 2, . . . , ℓP are always zero. This induces a block cipher E ′(k, i) such that

E ′ has ℓC and ℓk the same as E, but ℓP = m. For any fixed i0, the same is also true

though the induced cipher is slightly different.

Scenario Seven: Fast Shuffling and Anonymity

Given a random permutation σ on the set of n elements, one can trivially shuffle

a list of n objects. This is needed in many areas, most notably in scrambling data

to preserve the privacy of patients in medical research. Note that sending each item

i to the spot σ(i) is sufficient for a random shuffle and takes Θ(n) time total; for a

large n this is much better than assigning a random number to each item and then

sorting, which would take Θ(n logn) time. One can do this by using

σ(i) = E(k, i) mod n

But, especially if n is a power of 2, this induces a block cipher with high ℓk (to

protect anonymity) but with small block size ℓP = ℓC = ⌈log2 n⌉.
Surely even for 128 clients, a cipher with a 128-bit key used in this way has input

and output of only 7 bits in length. Yet an attacker should be lower bounded by 2128

operations, not 27 operations.

A.4 The Keeloq Code-book—Practical Considerations

The original version of our Keeloq attack required on average about 60% of the

code-book [31, Ch. 2], but as described in Section 3.4.1 on Page 21, we allow the

fraction of the code-book available to be a variable η .

We have not touched upon the issue of how the code-book can be obtained in

the case of Keeloq and automobile applications. Either it can be obtained from a

A.5 Conclusions 307

remote encryption oracle, or simply harnessing the circuitry without being able to

read the key in order to clone the device. While this may sound like a practical attack

scenario, in practice the devices are simply too slow to obtain this. It is also note-

worthy that since each plaintext is 25 bits long, and there are 232 of them, the entire

code-book is 237 bits or 16 Gigabytes. This amount of RAM is already available on

high-end PC’s at the time of the writing of this book (or even a few years prior).

Oddly, the 64-bit key size implies that the exshaustive search is actually feasible

in practice, and hackers and car thieves implement it with2 FPGA’s [184]. Such an

attack requires only 2 known plaintexts (one known plaintext does not alone allow

one to uniquely determine the key, which is another consequence of the unusually

small block size). We note that while 232 encryptions is difficult to obtain with the

original chips that are quite inexpensive and slow, with FPGA’s as much as 264

encryptions is feasible. This is because the FPGA’s are faster and are compatible

with parallel processing.

Therefore, we do not know if it is possible to obtain the originally estimated

η = 0.6×232 plaintexts to mount the Keeloq attack. A smaller η might be slightly

more feasible, but it might be cheaper to buy the car that you were hoping to steal.

But, if the block cipher Keeloq is to be compared to any other block cipher, then

using an encryption oracle, finding and storing the codebook is not difficult.

A.5 Conclusions

After looking over this appendix, we hope that the reader believes that attacks

which recover a key, even after the entire code-book is known, are worthy of atten-

tion and are related to real-world situations. But, in the end, we must confess that

this is a matter of opinion and not scientific argumentation.

2 An FPGA is a Field Programmable Gate Array, basically a device which can be used to rapidly

prototype integrated circuits, much faster than individual transistors but much less efficient than

the very expensive process of making one’s own chip.

Appendix B

Formulas for the Field Multiplication law for

Low-Degree Extensions of GF(2)

B.1 For GF(4)

For the product p = ab

p0 = a0b0 +a1b1

p1 = a1b0 +a0b1 +a1b1

For the product p = abc

p0 = a0b0c0 +a1b1c0 + c1a1b0 + c1a0b1 + c1a1b1

p1 = a1b0c0 +a0b1c0 +a1b1c0 +a0b0c1 + c1a0b1 + c1a1b0

For the product p = abcd

p0 = d0a0b0c0 +d0a1b1c0 +d0c1a1b0 +d0c1a0b1 +d0c1a1b1 +d1a1b0c0 +d1a0b1c0

+d1a0b0c1 +d1c1a0b1 +d1c1a1b0 +d1a1b1c0

p1 = a0b1c0d0 +d1a0b1c0 +d0a1b1c0 +2d0c1a1b1 +a0b0c1d0 +d1a0b0c1 +d0c1a0b1

d1a0b0c0 +d1c1a1b1 +a1b0c0d0 +d1a1b0c0 +d0c1a1b0

B.2 For GF(8)

For the product p = ab

p0 = a0b0 +a2b1 +a1b2

p1 = a0b2 +a2b0 +a2b2 +a1b1

p2 = a0b1 +a2b1 +a2b2 +a1b0 +a1b2

309

310 B Formulas for the Field Multiplication law for Low-Degree Extensions of GF(2)

For the product p = abc

p0 = c0a0b0 + c0a2b1 + c0a1b2 + c1a0b2 + c1a2b0 + c1a2b2 + c1a1b1 + c2a0b1 + c2a2b1 + c2a2b2

+c2a1b0 + c2a1b2

p1 = c1a0b0 + c1a2b1 + c1a1b2 + c1a0b2 +a0b2c2 + c1a2b0 +a2b0c2 + c1a2b2 + c1a1b1 + c2a1b2

+a1b1c2 +a0b1c0 + c2a0b1 + c0a2b1 + c2a2b1 +a2b2c0 +a1b0c0 + c2a1b0 + c0a1b2

p2 = c2a0b0 + c2a2b1 + c2a1b2 +a0b2c0 +a0b2c2 +a2b0c0 +a2b0c2 +a2b2c0 + c2a2b2 +a1b1c0

+a1b1c2 + c1a0b1 + c1a2b1 + c1a2b2 + c1a1b0 + c1a1b2

For the product p = abcd

p0 = d0c0a0b0 +d0c0a1b2 +d0c0a2b1 +d0c1a0b2 +d0c1a1b1 +d0c1a2b2 +d0c1a2b0 +d0c2a2b2

+d0c2a2b1 +d0c2a0b1 +d1c2a2b1 +d1c2a0b0 +d0c2a1b2 +d0c2a1b0 +d1a0b2c2 +d1a0b2c0

+d1c2a1b2 +d2c2a0b1 +d2c0a2b1 +d2c2a2b1 +d2a2b2c0 +d2a1b0c0 +d2c2a1b0 +d2c0a1b2

+d2c2a1b2 +d1a1b1c0 +d1c2a2b2 +d1a2b2c0 +d1a2b0c2 +d1a2b0c0 +d1c1a0b1 +d1a1b1c2

+d1c1a1b0 +d1c1a2b2 +d1c1a2b1 +d1c1a1b2 +d2c1a0b2 +d2c1a1b2 +d2c1a2b1 +d2c1a2b0

+d2a0b2c2 +d2a2b0c2 +d2c1a2b2 +d2c1a0b0 +d2c1a1b1 +d2a1b1c2 +d2a0b1c0

p1 = d0c0a1b2 +d0c0a2b1 +d0c1a0b2 +d0c1a1b1 +d0c1a2b2 +d2a0b1c0 +d0c1a2b0 +d0c2a2b1

+d0c2a0b1 +d1c2a0b0 +d0c2a1b2 +d0c2a1b0 +d1a0b2c2 +d1a0b2c0 +d1c1a0b2 +d2c1a0b0

+d2c2a0b1 +d2c0a2b1 +d2a1b0c0 +d2c2a1b0 +d2c0a1b2 +d1a1b1c0 +d1c0a0b0 +d2c1a1b1

+d1a2b2c0 +d1a2b0c2 +d1a2b0c0 +d1c1a0b1 +d1a1b1c2 +d1c1a1b0 +d1c1a2b1 +d1c1a2b0

+d1c1a1b2 +a0b2c0d2 +a2b0c0d2 +a1b1c0d2 + c1a0b1d2 +d1c1a1b1 +d1c2a0b1 +d1c2a1b0

+c2a0b0d2 + c1a1b0d2 + c1a0b0d0 + c1a2b1d0 + c1a1b2d0 +a0b2c2d0 +a2b0c2d0 +a1b1c2d0

+a0b1c0d0 +a2b2c0d0 +a1b0c0d0 +d1c0a2b1 +d2c1a0b2 +d2c1a2b0 +d2c2a2b2 +d1c0a1b2

p2 = d0c1a2b2 +d0c2a2b2 +d0c2a2b1 +d1c2a2b1 +d0c2a1b2 +d1a0b2c2 +d1c2a1b2 +d2c2a0b1

+d2c0a2b1 +d2a2b2c0 +d2c2a1b0 +d2c0a1b2 +d1a2b2c0 +d2a1b1c2 +d1c1a0b2 +d2c1a1b1

+d1a2b0c2 +d1a1b1c2 +d1c1a2b2 +d1c1a2b1 +d1c1a1b2 +a0b2c0d2 +a2b0c0d2 +a1b1c0d2

+c1a0b1d2 +d1c1a1b1 +d1c2a0b1 +d1c2a1b0 + c2a0b0d2 + c1a1b0d2 + c1a2b1d0 + c1a1b2d0

+a0b2c2d0 +a2b0c2d0 +a1b1c2d0 +a2b2c0d0 + c2a0b0d0 +a0b2c0d0 +a2b0c0d0 +a1b1c0d0

+c1a0b1d0 + c1a1b0d0 +d1c0a2b1 +d2c0a0b0 +d2c1a0b2 +d2c1a1b2 +d2c1a2b1 +d2c1a2b0

+d2a0b2c2 +d2a2b0c2 +d1c0a1b2 +d1c1a0b0 +d1a0b1c0 +d1a1b0c0 +d1c1a2b0

B.3 For GF(16)

See Section 15.5 on Page 284.

B.4 For GF(32) 311

B.4 For GF(32)

For the product p = ab

p0 = a0b0 +a4b1 +a3b2 +a2b3 +b4a1 +a4b4

p1 = a1b0 +a0b1 +a4b2 +a3b3 +a2b4

p2 = a0b2 +a4b3 +a3b2 +a3b4 +a2b0 +a2b3 +a1b1 +b4a1 +a4b1 +a4b4

p3 = a0b3 +a4b4 +a3b0 +a3b3 +a2b1 +a2b4 +a1b2 +a4b2

p4 = a0b4 +a4b0 +a3b1 +a3b4 +a2b2 +a1b3 +a4b3

For the product p = abc

p0 = c1a4b3 + c0a2b3 + c4a4b2 + c4a4b0 + c1a4b0 + c3a3b2 + c1a2b2 + c3a1b1 + c4a0b4 + c2a3b0

+c3a2b0 + c2b2a1 + c3a3b4 + c3a4b1 + c2a0b3 + c0a4b1 + c1a3b4 + c2a4b2 + c3a2b3 + c3b4a1

+c0a4b4 + c4a4b3 + c2a2b4 + c4a3b3 + c4a1b0 + c2a4b4 + c2a2b1 + c1a3b1 + c2a3b3 + c3a4b4

+c4a3b4 + c0a0b0 + c4a2b4 + c1a0b4 + c3a0b2 + c1b3a1 + c4b3a1 + c4a2b2 + c0b4a1 + c4a0b1

+c3a4b3 + c4a3b1 + c0a3b2

p1 = c0a2b4 + c0a0b1 + c0a1b0 + c3a0b3 + c1a4b1 + c3a1b2 + c1a4b4 + c2a1b3 + c0a4b2 + c2a0b4

+c4a4b3 + c1a3b2 + c1a0b0 + c3a4b2 + c3a2b4 + c2a3b1 + c3a4b4 + c4a3b4 + c2a4b0 + c3a2b1

+c3a3b3 + c2a3b4 + c1a2b3 + c2a4b3 + c2a2b2 + c4a1b1 + c4a1b4 + c4a0b2 + c4a4b1 + c4a4b4

+c4a3b2 + c4a2b0 + c4a2b3 + c3a3b0 + c1a1b4 + c0a3b3

p2 = c1a4b3 + c0a2b3 + c4a4b0 + c1a4b0 + c3a3b2 + c2a1b4 + c1a2b2 + c3a1b1 + c4a0b4 +a1b0c1

+c2a3b0 + c3a2b0 + c2b2a1 + c3a2b2 + c3a4b1 + c2a0b3 + c0a4b1 + c1a3b4 + c2a4b2 +a2b4c1

+c3a2b3 + c3b4a1 + c3a0b4 + c0a4b4 + c4a4b3 + c2a2b4 + c4a1b0 + c3a1b3 +a3b3c1 +a4b2c1

+c2a2b1 + c1a3b1 + c2a3b3 + c2a4b1 + c3a4b4 +a3b0c4 + c4a3b4 +a2b1c4 + c3a4b0 +a0b1c1

+c1a0b4 + c3a0b2 + c1b3a1 + c4b3a1 + c4a2b2 + c0b4a1 + c4a0b1 + c2a3b2 +2c3a4b3 + c4a3b1

+a1b2c4 + c4a4b4 + c2a2b3 + c0a3b2 +a0b3c4 + c2a0b0 + c3a3b1 +a1b1c0 +a0b2c0 +a4b3c0

+a3b4c0 +a2b0c0

p3 = c1a4b3 + c0a2b4 + c3a0b3 + c4a4b0 + c1a4b1 + c3a1b2 + c3a3b2 + c1a4b4 + c4a0b4 + c3a4b1

+c3a0b0 + c2a1b3 + c1a3b4 + c2a4b2 + c0a4b2 + c3a2b3 + c3b4a1 + c2a0b4 + c0a4b4 + c1a3b2

+c2a2b4 + c3a4b2 + c3a2b4 + c2a3b3 + c2a3b1 + c2a4b0 + c3a2b1 + c3a3b3 + c1a1b4 + c0a3b3

+c4b3a1 + c4a2b2 + c2a3b4 + c4a3b1 + c1a2b3 + c2a4b3 + c2a0b1 + c2a1b0 +a0b3c0 +a3b0c0

+a2b1c0 +b2a1c0 +a0b2c1 +a2b0c1 +a1b1c1 + c2a2b2 + c4a1b1 + c4a1b4 + c4a0b2 + c4a4b1

+c4a4b4 + c4a3b2 + c4a2b0 + c4a2b3 + c3a3b0

p4 = c4a4b2 + c2a1b4 + c1a4b4 + c3a2b2 + c3a3b4 + c3a0b4 + c4a3b3 + c3a1b3 + c2a4b4 + c3a4b2

+c0b3a1 + c3a2b4 + c4a0b0 + c2a4b1 +a3b0c4 +a2b1c4 + c3a4b0 + c3a3b3 + c4a2b4 + c2a3b4

+c2a3b2 + c3a4b3 + c2a4b3 +a1b2c4 + c4a1b4 + c4a4b1 + c4a3b2 + c4a2b3 + c2a2b3 + c3a1b0

+a0b3c4 + c3a3b1 + c0a0b4 + c0a4b0 + c0a3b1 +a4b3c0 +a3b4c0 +a4b2c1 +a3b3c1 +a2b4c1

+c0a2b2 +a0b3c1 +a3b0c1 +a2b1c1 +b2a1c1 + c2a0b2 + c2a2b0 + c2a1b1 + c3a0b1

For the product p = abcd, the formulas were too large to be efficiently copied

from MAPLE, unfortunately.

312 B Formulas for the Field Multiplication law for Low-Degree Extensions of GF(2)

B.5 For GF(64)

For the product p = ab

p0 = a0b0 +a5b1 +a4b2 +a3b3 +a2b4 +a1b5

p1 = a0b1 +a5b1 +a5b2 +a4b2 +a4b3 +a3b3 +a3b4 +a2b4 +a2b5 +a1b0 +a1b5

p2 = a0b2 +a5b2 +a5b3 +a4b3 +a4b4 +a3b4 +a3b5 +a2b0 +a2b5 +a1b1

p3 = a0b3 +a5b3 +a5b4 +a4b4 +a4b5 +a3b0 +a3b5 +a2b1 +a1b2

p4 = a0b4 +a5b4 +a5b5 +a4b0 +a4b5 +a3b1 +a2b2 +a1b3

p5 = a0b5 +a5b0 +a5b5 +a4b1 +a3b2 +a2b3 +a1b4

For the product p = abc

p0 = c0a0b0 + c0a5b1 + c0a4b2 + c0a3b3 + c0a2b4 + c0a1b5 + c1a0b5 + c1a5b0 + c1a5b5 + c1a4b1

+c1a3b2 + c1a2b3 + c1a1b4 + c2a0b4 + c2a5b4 + c2a5b5 + c2a4b0 + c2a4b5 + c2a3b1 + c2a2b2

+c2a1b3 + c3a0b3 + c3a5b3 + c3a5b4 + c3a4b4 + c3a4b5 + c3a3b0 + c3a3b5 + c3a2b1 + c3a1b2

+c4a0b2 + c4a5b2 + c4a5b3 + c4a4b3 + c4a4b4 + c4a3b4 + c4a3b5 + c4a2b0 + c4a2b5 + c4a1b1

+c5a0b1 + c5a5b1 + c5a5b2 + c5a4b2 + c5a4b3 + c5a3b3 + c5a3b4 + c5a2b4 + c5a2b5 + c5a1b0

+c5a1b5

p1 = c5a5b1 + c5a4b2 + c5a3b3 + c5a2b4 + c5a1b5 + c1a5b5 + c2a5b4 + c2a4b5 + c3a5b3 + c3a4b4

+c3a3b5 + c4a5b2 +a4b5c4 +a3b0c3 +a3b0c4 +a2b1c3 +a2b1c4 +a1b2c3 +a0b3c3 +a0b3c4

+a1b2c4 +a0b2c4 +a0b2c5 +a5b3c5 +a4b4c5 +a3b5c5 +a2b0c4 +a3b1c3 +a2b2c2 +a2b2c3

+a2b0c5 +a1b1c4 +a1b1c5 +a0b1c0 +a0b1c5 +a5b1c0 +a5b2c0 +a4b2c0 +a4b3c0 +a5b4c4

+a3b3c0 +a3b4c0 +a2b4c0 +a2b5c0 +a1b0c0 +a1b0c5 +a1b5c0 + c4a4b3 + c4a3b4 + c4a2b5

+c1a0b0 + c1a5b1 + c1a4b2 + c1a3b3 + c1a2b4 + c1a1b5 +a0b5c1 +a0b5c2 +a5b0c1 +a5b0c2

+a4b1c1 +a4b1c2 +a3b2c1 +a3b2c2 +a2b3c1 +a2b3c2 +a1b4c1 +a1b4c2 +a0b4c2 +a1b3c3

+a0b4c3 +a5b5c3 +a4b0c2 +a4b0c3 +a3b1c2 +a1b3c2

p2 = c1a0b1 +a5b0c3 +a0b5c3 + c2a1b5 + c2a2b4 + c2a3b3 + c2a4b2 + c2a5b1 + c2a0b0 +a5b4c5

+a0b3c5 +a1b3c4 +a2b2c4 +a3b1c4 +a4b0c4 +a5b5c4 +a0b4c4 +a1b4c3 +a2b3c3 +a3b2c3

+a4b1c3 + c1a1b0 + c1a2b5 + c1a3b4 + c1a4b3 + c1a5b2 +a1b1c0 +a2b0c0 +a3b5c0 +a4b4c0

+a5b3c0 +a0b2c0 +a1b2c5 +a2b1c5 +a3b0c5 +a4b5c5 +a4b4c4 +a3b0c4 +a3b5c4 +a5b3c4

+a2b1c4 +a1b2c4 +a0b2c5 +a5b2c5 +a4b3c5 +a3b4c5 +a2b2c3 +a1b3c3 +a0b3c4 +a3b1c3

+a2b0c5 +a2b5c5 +a1b1c5 +a5b2c0 +a4b3c0 +a3b4c0 +a2b5c0 + c1a5b1 + c1a4b2 + c1a3b3

+c1a2b4 + c1a1b5 +a0b5c2 +a5b0c2 +a5b5c2 +a4b1c2 +a3b2c2 +a2b3c2 +a1b4c2 +a0b4c3

+a5b4c3 +a4b0c3 +a4b5c3

p3 = a5b5c5 +a5b0c3 +a0b5c3 + c2a1b5 + c2a2b4 + c2a3b3 + c2a4b2 + c2a5b1 +a0b3c5 +a0b4c5

+a1b3c4 +a2b2c4 +a3b1c4 +a4b0c4 +a0b4c4 +a1b4c3 +a2b3c3 +a3b2c3 +a4b1c3 +a1b4c4

+c1a2b5 + c1a3b4 + c1a4b3 + c1a5b2 +a3b5c0 +a4b4c0 +a5b3c0 +a1b2c5 +a2b1c5 +a3b0c5

+c2a0b1 + c2a5b2 + c2a4b3 + c2a3b4 + c2a2b5 + c2a1b0 +a4b5c4 +a5b3c5 +a4b4c5 +a3b5c5

+a5b5c3 +a5b4c4 +a4b0c5 +a3b1c5 +a2b2c5 +a1b3c5 +a0b3c0 +a5b4c0 +a4b5c0 +a3b0c0

+a2b1c0 +a1b2c0 + c1a0b2 + c1a5b3 + c1a4b4 + c1a3b5 + c1a2b0 + c1a1b1 + c3a0b0 + c3a5b1

+c3a4b2 + c3a3b3 + c3a2b4 + c3a1b5 +a0b5c4 +a5b0c4 +a4b1c4 +a3b2c4 +a2b3c4

B.5 For GF(64) 313

p4 = a0b5c5 +a5b0c5 +a5b5c0 +a4b1c5 +a3b2c5 +a2b3c5 +a1b4c5 + c1a5b4 + c1a4b5 +a0b4c5

+a5b4c5 +a5b5c4 +a4b5c5 + c2a5b2 + c2a4b3 + c2a3b4 + c2a2b5 + c2a5b3 + c2a4b4 + c2a3b5

+c3a5b2 + c3a4b3 + c3a3b4 + c3a2b5 + c4a5b1 + c4a4b2 + c4a0b0 +a0b4c0 +a4b0c0 +a3b1c0

+a2b2c0 +a1b3c0 + c1a0b3 + c1a3b0 + c1a2b1 + c1a1b2 + c2a0b2 + c2a2b0 + c2a1b1 + c3a0b1

+c3a1b0 + c4a3b3 + c4a2b4 + c4a1b5 +a4b0c5 +a3b1c5 +a2b2c5 +a1b3c5 +a5b4c0 +a4b5c0

+c1a5b3 + c1a4b4 + c1a3b5 + c3a5b1 + c3a4b2 + c3a3b3 + c3a2b4 + c3a1b5 +a0b5c4 +a5b0c4

+a4b1c4 +a3b2c4 +a2b3c4 +a1b4c4

p5 = a0b5c5 +a5b0c5 +a5b5c0 +a5b5c5 +a4b1c5 +a3b2c5 +a2b3c5 +a1b4c5 + c1a5b4 + c1a4b5

+c5a0b0 + c5a5b1 + c5a4b2 + c5a3b3 + c5a2b4 + c5a1b5 +a5b0c0 + c2a5b3 + c2a4b4 + c2a3b5

+c3a5b2 + c3a4b3 + c3a3b4 + c3a2b5 + c4a5b1 + c4a4b2 + c4a3b3 + c4a2b4 + c4a1b5 +a0b5c0

+a4b1c0 +a3b2c0 +a2b3c0 +a1b4c0 + c1a0b4 + c1a5b5 + c1a4b0 + c1a3b1 + c1a2b2 + c1a1b3

+c2a5b4 + c2a4b5 + c2a3b0 + c2a2b1 + c2a1b2 + c3a0b2 + c3a5b3 + c3a4b4 + c3a3b5 + c3a2b0

+c3a1b1 + c4a0b1 + c2a0b3 + c4a5b2 + c4a4b3 + c4a3b4 + c4a2b5 + c4a1b0

For the product p = abcd, the formulas were too large to be efficiently copied

from MAPLE, unfortunately.

Appendix C

Polynomials and Graph Coloring, with Other

Applications

While this book is intended to inform the reader how polynomial systems of

equations can be used to perform algebraic cryptanalysis, other applications of

polynomials over finite fields exist. In particular, the connection to graph coloring

is given in this appendix. This is a natural association, as both problems are NP-

Complete; both problems are related to real-world applications; and both problems

are quite solvable in small or special cases. Finally, both problems are unsolvable in

the large, most general case. Thus a tool that works well for one might work well

for the others.

C.1 A Very Useful Lemma

Before we begin, the following lemma is very useful at this point.

Lemma 93. Let F be a finite field of order q. Then x ∈ F is a root of xq−1−1 if and

only if x 6= 0.

Proof. Consider the equation xq− x = 0, which is also known as Fermat’s Little

Theorem. This polynomial is satisfied for every element of the field GF(q). Since

there are q elements in GF(q) and xq− x is a polynomial of degree q and thus has

at most q distinct roots, then we know each value of GF(q) is a root of multiplicity

one.

One can rewrite xq− x = x(xq−1− 1) by factoring. Clearly x = 0 satisfies x but

not xq−1−1. Therefore, the other roots of xq− x, namely all the non-zero elements

of GF(q) are roots of xq−1−1. ⊓⊔
Corollary 94. Let F be a finite field of order q. Then (y,z) ∈ F× F is a root of

(y− z)q−1−1 if and only if y 6= z.

Proof. Obvious. ⊓⊔
Therefore, we can think of xq−1−1 = 0 as an encoding of x 6= 0 as a polynomial

system of equations, and also (y− z)q−1−1 = 0 as an encoding of y 6= z.

315

316 C Polynomials and Graph Coloring, with Other Applications

C.2 Graph Coloring

The author assumes the following has been known for a long time. Suppose one

wants to color the graph G = (V,E) with c colors, or alternatively, determine if such

a coloring exists. First, assume that c = q is the size of some field—we will deal

with other values of c shortly. Name each of the c colors by the elements of the field

GF(q). Each vertex vi shall have the color ci. The |V | variables c1, . . . ,c|V | will be

the |V | variables of our system of polynomial equations.

Recall, since our field is of prime power order q, then xq−1−1 = 0 if and only if

x 6= 0. Therefore, for each pair of vertices vi and v j, if an edge connects them, write

the equation (ci−c j)
q−1−1 = 0. (See Corollary 94 on Page 315). This is equivalent

to requiring ci 6= c j.

Clearly, any solution set c1, . . . ,c|V | will meet the requirements of a coloring.

Some methods of solving polynomial systems of equations only consider solutions

in the base field. Others will consider solutions that are found in extension fields,

and so adding the equations c
q
i − ci = 0 will ensure that the value of each ci is

strictly inside the chosen field. These extra equations are sometimes called “the

field equations.”

C.2.1 The c 6= pn Case

Lastly we consider colorings with a number of colors that cannot be the size of

a field. Suppose q ≥ c and q is a number such that there is a field of size q. (That

is, q is either a prime or a power of a prime). Then add q− c “dummy vertices” to

the graph, and connect each of these dummy vertices to every vertex of the graph,

including the other dummies. Clearly, each dummy must have a color of its own,

which no other vertex in the graph uses, because it is adjacent to every other vertex

in the graph. Thus, we dispose of q− c colors, and the rest of the graph will be c

colored by any satisfactory solution. Likewise, any c coloring of the original |V |
vertices will produce an equivalent q coloring of the new |V |+(q−c) vertex graph,

after coloring the dummy vertices in one of the obvious (q− c)! ways.

C.2.2 Application to GF(2) Polynomials

The above shows that we could restrict ourselves to polynomial system of equa-

tions of characteristic two if needed, by adding dummy vertices. We would simply

choose

q = 2⌈log2 c⌉

and use the field GF(q). But suppose we wanted only to use GF(2), how would we

proceed to find a 4-coloring?

C.3 Related Applications 317

Give each vertex vx two variables, cx and dx. For all edges, for example between

vx and vy, if we write (cx−cy)−1 = 0 and (dx−dy)−1 = 0 then we ensure that cx 6=
cy and also that dx 6= dy. In GF(2), this would normally be written as cx +cy +1 = 0.

Unfortunately, we desire an “or”, because if cx 6= cy and dx = dy, then these are

distinct colors, and vice versa. The equations in this paragraph, if both added to the

system, result in a logical-AND, not a logical-OR as desired. This is because any

solution to a polynomial system of equations must satisfy each and every equation.
The following equation provides what we need.

(cx 6= dx) OR (cy 6= dy) ⇐⇒ (cx +dx = 1) OR (cy +dy = 1)

⇐⇒ (cx +dx)+(cy +dy)+(cx +dx)(cy +dy) = 1

⇐⇒ cx +dx + cy +dy + cxcy +dxcy + cxdy +dxdy +1 = 0

And thus solving this particular sparse polynomial system of equations over

GF(2), with 2|V | variables, is equivalent to 4-coloring G = (V,E).

C.3 Related Applications

The following applications follow directly from graph coloring.

C.3.1 Radio Channel Assignments

Graph coloring problems come up in theoretical radio channel assignments,

where cities near each other can cause interference, if they have radio channels

on the same frequencies. This is complicated by the fact that it is not merely a

geographic proximity. Mountains, for example, will block signals, while the Mid-

western Plains of the USA create a “clear channel” of millions of square miles.

A more challenging example is a conference with many rooms connected by

open public spaces, and many users with laptops who wish to use a wireless service.

Two laptops might interfere if in the same large room some significant distance apart

but not if a small distance apart in distinct rooms. Thus one could make a vertex for

each user and draw an edge between those who would interfere, and color the graph.

Each color is a set of users, any one of which cannot interfere with any other of the

same color (otherwise there would be an edge between them), and so they can use

the same frequency.

In mobile radio networks, this is crucial, as the radios are moving around, and so

one must re-assign frequencies quite often. Recent work to develop sensor networks

by scattering very small simple devices randomly about a region of space would

also require this problem to be solved. See [108].

318 C Polynomials and Graph Coloring, with Other Applications

C.3.2 Register Allocation

Suppose a microprocessor has five registers named A, B, C, D, and E. In a par-

ticular function in a compiler, there might be 5 or fewer variables. In this case, all

of them can be allocated to registers. This is useful because reading and writing to

memory is often far slower than reading and writing from the registers.

If there are more than 5 variables it may still be possible to assign the variables

to registers in such a way that reading or writing to memory is not required. First,

compile the code from the higher-level language into the microprocessor’s instruc-

tion set, but with an infinite number of registers. That is to say, every variable is a

register variable.

The first time a variable is used, it is said to be born at the time of that instruction.

Likewise, it is said to die at the time of the last instruction which uses it. Construct

a graph with a vertex for each variable. If the “life-spans” of two variables overlap,

then draw an edge between their vertices. When the graph is constructed, attempt a

5-coloring.

If a 5-coloring is possible, then each variable with a given color can be assigned

to the same register. If two variables are assigned the same vertex color, then there

is no edge between their vertices. This means that their life-spans do not overlap,

and so there can be no conflict between them.

If a 5-coloring is not possible, then it is clear that not all the variables can be

shared among the 5 registers. By empirical methods, one is chosen to become a

memory location, and the process is repeated. This approach is found in [57].

C.4 Interval Graphs

At first glance, it seems that the previous example of microprocessor register

scheduling might be very useful for assigning lecture halls to classes. However, we

will show that this is actually a special subproblem. The graphs created by schedul-

ing lecture halls for classes will always produce a graph that is an interval graph (to

be defined momentarily)—provided that there is some moment when no classes are

scheduled (e.g. at 4 o’clock in the morning).

While coloring a graph in general is NP-hard, to color an interval graph is poly-

nomial time compared to the number of vertices. The interval graph concept was

used in 1965 by Fulkerson and Gross [118], but might have been known earlier.

Here we will solve the underlying scheduling problem, and produce the coloring as

a side-effect. Many more general results are known, which we omit.

Suppose we are given a series of tasks t1, . . . , tn which must be done in time

intervals of the form [ai,bi), by some resource (e.g. scheduled classes which must

be given a lecture hall, or tasks being assigned to a worker). We must outlaw tasks

of zero duration (i.e. ai = bi). We wish to use the fewest number of colors (lecture

halls or workers) possible. One can make a graph with a vertex for each task t. Then

C.4 Interval Graphs 319

one can draw an edge between task ti and t j if their1 intervals [ai,bi) and [a j,b j)
are of non-empty overlap. More precisely, if ai < b j or if a j < bi. Surely there is

no harm in two tasks getting the same color (lecture hall or worker) if the times of

those tasks do not overlap.

The graph produced in the above manner can then be colored. Because two ver-

tices with the same color cannot have an overlapping interval, these tasks can be as-

signed to the same lecture hall/worker. Thus we need as many lecture halls/workers

as there are colors—very similar to what we saw before.

The definition of an interval graph is a bit backward.

Definition 95. A graph G = (V,E) is an interval graph if there exist intervals [ai,bi)
for each vi ∈V such that there is an edge between vi and v j if and only if [ai,bi) and

[a j,b j) are of non-empty intersection.

Given the above definition, one would wonder if there is any method to deter-

mine, given the graph alone, if it is an interval graph. The answer is yes, and can

be found in [52]. In general, there is a rich literature on the subject. Searching for

papers which cite [118] is sufficient to find more than one can read in a reasonable

length of time. An excellent combination of interval graphs and register allocation

can be found in the article [233].

C.4.1 Scheduling an Interval Graph Scheduling Problem

The algorithm for solving this problem is as follows. Number the colors 1,2, . . . ,c
and sort the events by their starting time. That is if a j > ai then j > i in the final

ordering. As it comes to pass, we will not even construct the graph at all during the

coloring. The algorithm was given by Fulkerson and Gross, and so we call it the FG

algorithm.

The FG algorithm proceeds quite simply. We start with no colors. When a task

begins, we see if any colors are available. If so, then we use one. If not, then we

create one, and apply it to the given task. The color used is placed in a “used list”.

When a task ends, we simply move that color from the “used list” to the “available

list.” The invariant condition is that we never create a new color unless all the current

colors are currently in use. For this reason the sorting should place all STOPs before

all STARTs that have the same moment of time assigned to them. The details are

found in Algorithm 29, where the used list is denoted Cu and the available list is

denoted Ca.

Suppose the FG algorithm says that the graph can be colored with c colors, but

some other coloring exists with c− 1 colors. Let tx be the first task in the coloring

generated by the FG algorithm, to be assigned the cth color. At that instant, namely

ax we only could possibly have chosen the cth color if colors 1, 2, 3, . . . , c−1 were

already occupied on tasks that have not yet ended, otherwise we would certainly

1 Here we use the interval notation from real analysis that x ∈ [a,b) means a≤ x < b.

320 C Polynomials and Graph Coloring, with Other Applications

1: L ←{}
2: For each event [ai,bi) do

• Insert (ai,START, i) in the list L .

• Insert (bi,STOP, i) in the list L .

3: Sort the list L by comparing the first element of each triple. If there is a tie, STOPs are to come

before STARTs.

4: c← 0

5: Ca,Cu←{}
6: For each triple in L do

• If it is of the form (ai,START, i) then

– If Ca is empty, then

1: c← c+1

2: Print “task i gets color c.”

3: Insert (c, i) into Cu.

– Else Ca has something in it,

1: Ca contains a positive integer in [1,c]. Call it c1.

2: Remove c1 from Ca.

3: Print “task i gets color c1.”

4: Insert (c1, i) into Cu.

• if it is of the form (bi,STOP, i) then

1: Fetch the item from Cu whose second entry is i. This will be (cx, i).
2: Remove (cx, i) from Cu.

3: Insert cx into the list Ca.

7: Print “A total of c colors were used.”

Algorithm 29: Coloring an Interval Graph [Fulkerson and Gross]

have chosen a lower color. Thus, at this very moment, there will be c simultaneous

activities. And if there are c simultaneous activities, then there is no way to use only

c−1 colors, and so the c−1 coloring does not actually exist.

And therefore the FG algorithm is optimal in the following sense. If it uses c

colors, then no coloring with fewer colors would be possible. And by contrapositive,

if a coloring with fewer than c colors is possible, then the algorithm will not use c

colors, but instead will use fewer.

Moreover, the complexity of the algorithm appears to have the longest step being

the sorting of the list of tasks, which will be n logn time for n tasks. This is very

distinct from the general case of graph coloring, where (assuming P 6= NP), super-

polynomial time would be required.

C.4.2 Comparison to Other Problems

If a program had straight-line execution, with no loops at all, it is easy to see

that the register-allocation problem could be handled as a lecture-hall scheduling

problem. However, the difference becomes crucial in the presence of loops. In a

C.4 Interval Graphs 321

loop, it is possible that A can depend on B, which must depend on C and C depends

on A. This is not possible in the interval scenario, because of the transitive and

antisymmetric properties of ≤.

Hence the requirement that there exist a time when no classes are scheduled.

Otherwise the school day could be thought of as a loop.

C.4.3 Moral of the Story

The graph coloring problem is NP-Complete [63, Ch. 34.5], and so is MP (see

Theorem 11.5 on Page 199), and so it is only natural that we found a way to map

the graph coloring problem into solving a polynomial system of equations. But,

for a major class of applications, namely interval graphs, the original scheduling

problem can be solved in time slightly worse than linear to the number of vertices

O(|V | log |V |). Thus, a very slight tweak to the problem renders the computation

trivial instead of intractable.

And thus, we must be very careful with problems that we proclaim to be diffi-

cult. We must be ever watchful that no small tweak to the problem (perhaps made

without even realizing it) suddenly renders the problem much easier than we first

contemplated.

Appendix D

Options for Very Sparse Matrices

Here we will discuss what can be done about finding the null space of sparse

matrices over GF(2), or solving linear systems of equations Ax = b, when the ma-

trices are of enormous dimensions. If a dense matrix of the same size can be stored

in the computer in question, one can use dense matrix techniques, but they are far

slower. If storing a dense matrix of the same size is not feasible, then sparse matrix

techniques are obligatory.

The following is a general survey

• “Solving Large Sparse Linear Systems over Finite Fields”, by Brian A. LaMac-

chia and Andrew M. Odlyzko [156], published at CRYPTO in 1991.

D.1 Preliminary Points

Before we begin to discuss the options that are available, we should review a few

fundamental concepts.

D.1.1 Accidental Cancellations

An important factor must be discussed first, namely that of accidental cancella-

tions. Take as an example, working in R. When two sparse rows are added, the set

of entries that are non-zero in the sum is the union of the sets of non-zeros in the

originals, except when two elements in the same position in each vector are additive

inverses of each other. If you assume that the sets of non-zeros in the original are

disjoint, then the weight of the sum is the sum of the weights of the originals. If not,

due to accidental cancellation, then the weight is at least less than or equal to the

sums of the weights of the original rows.

However, if one adds a 1 to a 1 in GF(2), then one obtains a 0. This is called an

accidental cancellation. It is clear that accidental cancellations in the real numbers

323

324 D Options for Very Sparse Matrices

will be very rare. In GF(2), it is also clear that they will be common. This makes

the subject of sparse linear algebra over GF(2) a bit different, from R or C.

D.1.2 Solving Equations by Finding a Null Space

A review of null spaces can be found in Section 10.5.5 on Page 174 with notes in

Section 6.4 on Page 85 also. As stated in Corollary 28 on Page 88, a linear system

of equations Ax = b over a finite field GF(q) has either qn−r or 0 solutions, where

A is an m×n matrix and r is the rank of the matrix (note r≤ n, r≤m). There is one

solution (to Ax = b) for each vector in the null space. For this reason, one might be

inclined to believe that finding a null space and solving a linear system are basically

equivalent. And they are in the following sense.

Suppose one had a machine which could rapidly compute the null space of a

matrix A. Then, one could simply create a dummy variable, xn+1, and solve instead

Ax−bxn+1 = 0 or
[

A −b
]

︸ ︷︷ ︸

A′

[
x

xn+1

]

=
[

0
]

which is just finding the null space of the matrix A′.
Because the matrix A′ is m×n+1, we expect q times as many solutions, because

qn−r+1 = qqn−r. But, the basis of the null space is what null space finding algorithms

produce, and so we would have merely one extra basis vector, which is not a big

deal.

We simply search through the null space and discard all vectors that do not have

xn+1 = 1. In conclusion, all tools for finding a null space and for solving a linear

system of equations are good for the opposite problem as well.

D.1.3 Data Structures and Storage

Consider a sparse matrix over GF(2). It is mostly zeros. Anything left is a 1.

Therefore, if we know the coordinates of each 1, then we know everything. There

are basically three ways to do this. The first, and obvious way, is to store a list of

ordered pairs (i, j) such that Ai j = 1 for every pair in the list, and of course Ai j = 0

otherwise. This is very inefficient, and the author does not know a name for it.

Instead, each row could be represented that way. Then there would be an array of

rows. Therefore you can jump to a row immediately, and then use normal linked-list

operations on the rows. The linked list would simply store the column number of the

non-zero entries. This is the row-major format, and is analogous to the row-major

format in dense matrices. It is good because most operations that work internal to a

matrix will iterate over rows. This is by far the most common data structure used.

D.2 Naı̈ve Sparse Gaussian Elimination 325

Sometimes, one desires a column-major representation. This is the same thing,

but there is an array of columns, and each column is a linked list.

Last but not least, in fields larger than GF(2), one can store the entry along with

the column number (row-major format) or row number (column-major format).

D.1.3.1 An Interesting Variation

In the matrices defined by the Linear Sieve, Quadratic Sieve (QS) and Number

Field Sieve (NFS) methods of factoring, the first few columns are very dense, and

then half of the entries are in the first
√

M columns, followed by the others scattered

sparsely in the remaining columns. Therefore, to optimize storage, the following

might work in this special case.

Have the densest 1024 columns (or for simplicity, the first 1024 columns) be rep-

resented by 32 words of 32-bits each, i.e. as a dense matrix data structure. The rest of

the entries in each row would be stored in the normal sparse matrix format, namely

linked-lists only containing the non-zero entry. The operations of row-addition, for

example, are very fast for 32-bit words for dense matrices, and the sparse part would

take advantage of the linked lists—since only non-zero entries are stored.

D.2 Naı̈ve Sparse Gaussian Elimination

Consider the most ordinary form of Gaussian Elimination as taught in high

school. At iteration i, the i− 1 columns at the left have been processed. Now, in

column i, one must find a 1 at position Aii or swap one into place, using row swaps.

Thus the pivoting strategy could be said to be to ensure a non-zero entry at Aii.

Instead, in Numerical Analysis, we learn that we may scan the entire column,

and take the row that has an entry in that column with largest absolute value. This

procedure, called “partial pivoting”, reduces rounding error (see Section 7.1.3 on

Page 91). The rarer practice of “full pivoting” involves scanning the entire matrix

and selecting the value with largest absolute value. This requires column-swaps,

which makes the code more complex.

For sparse matrices over finite fields, the obvious approach is to take the lowest

weight row that happens to have a non-zero element in column i. Recall, the weight

of a row is the number of non-zero entries in it. We call this “Naı̈ve Sparse Gaussian

Elimination”. Suppose that in column i there are 3 rows which have a non-zero entry

in that column. Let their weights be 3, 5, and 10. Then if the heaviest row is taken,

these 9 non-zero entries off of the active column will be added to entries in the other

two rows. It might come to pass that these two other rows already have entries in

those columns, but if the matrix is very sparse, this is not likely to be the case. Thus

those two rows will now acquire 9 or slightly less new entries. If instead, the row

with weight 3 is chosen, then the other two rows will now acquire at most 2 new

entries. This process of turning zero entries into non-zero entries is called “fill-in”,

326 D Options for Very Sparse Matrices

and an enormous amount of research over 52 years has been done on reducing fill-in

in sparse matrices; the seminal paper appeared in 1957, [169].

In joint work with Robert Miller and Seena Vali [34], the author is investigating

better pivoting choices. We have already discovered that if instead of taking the

lowest weight row, if one scans that row and picks its lowest weight column then

this is a considerable improvement in reducing fill-in [34]. To be clear, in stage i,

scan column i and note each row that has a non-zero entry there. Let the lowest-

weight row be r. Next, scan row r and see which columns c have low weight, but

Arc non-zero. Then pivot by swapping column i and column c as well as row r and

row i. We denote this “Semi-Naı̈ve Sparse Gaussian Elimination,” and it has been

known for a long time. We also have a far more complex algorithm that is still being

developed in [34].

D.2.1 Sparse Matrices can have Dense Inverses

As it turns out, a very sparse matrix can have a dense inverse. Also, the LUP

factorization can be dense. This means that the standard method of solving a system

of linear equations—doing the Gaussian Elimination to REF instead of RREF (see

Section 7.3 on Page 93) is extremely unwise, as the REF contains U , and so would

be dense. This is how we can expect that the fill-in effect is hard to avoid without

some insight, effort, or structure.

D.3 Markowitz’s Algorithm

The Markowitz algorithm is only a small modification of the above. In full-

pivoting, we consider all non-zero entries in the region Aii, . . . ,Amn, and choose

the one of largest absolute value. In Markowitz’s algorithm [169], we calculate the

weight of each row, denoted wr, and the weight of each column wc, and find a non-

zero entry Arc that minimizes (wr− 1)(wc− 1). Alternatively, Pomerance suggests

(wr− 2)(wc− 2)− 2 [193]. This is a raw estimate on the amount of fill-in created

by pivoting at Arc, and so in the spirit of the greedy algorithm, we pick that pivot.

D.4 The Block Wiedemann Algorithm

The Block Wiedemann algorithm by Don Coppersmith [61] is an excellent

method for sparse GF(2) linear systems. Section 5.2.3.1 on Page 72 for a discussion

of the running time, or [232] for a discussion of the application to the XL algorithm.

Currently, Block-Wiedemann seems to be the method of choice, at least in crypt-

analysis.

D.6 The Pomerance-Smith Algorithm 327

This algorithm is discussed in the following papers, and many others.

• “Solving sparse linear equations over finite fields”, by D. H. Wiedemann [230],

published in the IEEE Transactions on Information Theory in 1986.

• “On Wiedemann’s Method of Solving Sparse Linear Systems”, by Erich Kaltofen

and B. David Saunders [147], published in the proceedings of the 9th In-

ternational Symposium on Applied Algebra, Algebraic Algorithms and Error-

Correcting Codes in 1991.

• “Solving homogeneous linear equations over GF(2) via block Wiedemann algo-

rithm”, by Don Coppersmith [61], published in Mathematics of Computation in

1994.

• “Analysis of Coppersmith’s block Wiedemann algorithm for the parallel solution

of sparse linear systems”, by Erich Kaltofen [146], published in Mathematics of

Computation in 1995.

• “Further Analysis of Coppersmith’s Block Wiedemann Algorithm Using Matrix

Polynomials”, by Gilles Villard [219], published in the proceedings of the 1997

international symposium on symbolic and algebraic computation.

D.5 The Block Lanczos Algorithm

Like the Block Wiedemann algorithm, the Block Lanczos algorithm is also a

descendent of algorithms based on the Krylov subspaces approach. The author is

not familiar with this alternative, but the following references are highly cited.

• “A block Lanczos algorithm for finding dependencies over GF(2)”, by Peter

Montgomery [178], published in CRYPTO 1995.

• “Solving linear equations over GF(2): the block Lanczos algorithm,” by Don

Coppersmith [60], published in Linear Algebra and its Applications in 1993.

• “Computational Aspects of Discrete Logarithms”, the PhD Dissertation of

Robert Lambert [157], from 1996.

The last one presents a unified framework for understanding the Block Lanczos

and and Block Wiedemann algorithms.

D.6 The Pomerance-Smith Algorithm

This algorithm is sometimes called “Structured Gaussian Elimination” or “The

Created Catastrophes Algorithm”, but neither of these names is very descriptive. We

will call it the Pomerance-Smith algorithm after its creators [193].

The Pomerance-Smith Algorithm consists of seven operations which are guaran-

teed to never increase fill-in, and all of which reduce the size of the matrix. There-

fore, a series of these operations, which are all very simple, is guaranteed to shrink

328 D Options for Very Sparse Matrices

the problem at hand and simultaneously will not increase the memory used. Thus,

it is in its own way a sort of “Greedy Algorithm”. The key to understanding this

algorithm is to take the Operations and convince yourself that they are safe, and will

not create fill-in. Only then will the total picture take shape. The operations mostly

consist of deleting rows and columns that no longer matter.

D.6.1 Overview

Mainly, the algorithm is used during factoring methods like the Quadratic Sieve

(see Section 21 on Page 182) and those matrices are over GF(2). The algorithm is

usually presented over GF(2) but it can work over any field with trivial modification

which we omit.

The matrices produced by the algorithm have the unusual property that half the

entries are in the leftmost
√

n out of n columns. The remainder of the matrix is ex-

tremely sparse. Thus, while the matrix may have roughly 100,000–300,000 rows,

but only 10–30 entries per row. Essentially, each column represents a prime, and as

lots of numbers are divisible by 2, 3, 5, and 7, but far fewer by 101, it is only natu-

ral that the columns representing the smaller primes are more dense, and the larger

primes far less dense. This is a very smooth transition. Since the matrix is actu-

ally divided into this “dense part” and “sparse part”, the algorithm actually divides

the matrix into a dense region, called inactive, and a sparse region, called active.

Because the transition is smooth, it is very hard to decide where to draw the line.

D.6.1.1 Objective

The objective is to produce roughly 10 vectors in the basis of the null space. This

will produce 1023 non-trivial vectors (or 512 linear system solutions, if used in the

style of Section D.1.2 on Page 324). In the case of the Quadratic Sieve, each null

space vector has the potential to give the factorization of the number desired with

probability one-half. Therefore, even have 32 vectors would result in the number not

being factorable with probability 2−32 ≈ 2.5×10−10. The choice of 10 is thus “over

kill”. This parameter, which we call “margin,” can be set to other values, as might

be useful in other applications. The algorithm will trim the matrix to have a number

of rows equal to at most the number of columns plus the margin. Thus, excess rows

are deleted, and this destroys some information.

If the null space has 100 vectors in its basis, finding only 10 of those might be

undesirable for applications other than the Quadratic Sieve. We partially address

this in Section D.6.7 on Page 334.

D.6 The Pomerance-Smith Algorithm 329

D.6.1.2 The Method

The general process is as follows. One begins with the entire matrix in memory as

if it were a sparse matrix, minus the heaviest 5% of the columns. Those 5% highest

weight columns are copied into a dense matrix data structure (two-dimensional ar-

ray). Then one executes a series of the seven operations, including erasing rows and

columns. Also, some columns are declared dense, and copied into a dense matrix

data structure. Other rows and columns are “ejected”, and deleted entirely. Eventu-

ally, the sparse matrix is all zeros. In addition, one stores a history of the operations

that have been done.

The operations done are then to be replayed on the dense part of the matrix

which may have roughly 10% of the columns in it. This will be reduced into REF

with ordinary dense linear algebra techniques. Finally, one must reconstruct the null-

space.

D.6.2 Inactive and Active Columns

As mentioned above, the matrix will be divided between a dense part and a sparse

part. In particular, some columns will be declared inactive. In this case, they will be

removed from the sparse matrix data structure entirely. They will be copied into a

dense matrix data structure, with some sort of tag to represent which column they

were in the original matrix. The easiest way to do this is to tag each column ini-

tially with its “id-number”, and then this information will be retained throughout

the algorithm.

Thus “declaring a column inactive” means adding a column to the dense matrix

data structure, copying over the column from the sparse matrix to the dense matrix.

This is non-trivial, because rows will be deleted, and so one must match-up with

some sort of row id-numbers. Finally, delete the column from the sparse matrix.

It is absolutely vital to point out that by “weight” of a column, we mean the

number of non-zero entries in the column. By “weight” of a row, we explicitly only

count those entries which are in active columns (in the sparse matrix data structure)

and we explicitly do not count those entries which are in the inactive columns.

D.6.3 The Operations

The following seven operations will be repeated frequently during the algorithm.

They are named “Step n” in [193] and we rename them “Operation n” here only

because our more explicit rendering of the algorithm will include some intermediate

steps (which would otherwise have to be denoted as fractional steps).

First we will describe what each operation does.

330 D Options for Very Sparse Matrices

Operation 0: This operation declares k columns inactive. One searches for the

k heaviest columns, and does the copy-and-delete operation specified in Sec-

tion D.6.2.

Operation 1: Any column of weight 0 is uninvolved with any null-space vector.

Therefore, we can simply delete the column (not make it inactive, but actually

delete it). In a sense, it is a variable which we thought might occur in the system

of equations, but which is in fact not found there. Of course, this might be because

the rows that used it were deleted earlier. We will justify why it is okay to simply

delete rows in the description of Operation 3.

Operation 2: A column of weight 1 has only one row that it shares an element

with. Call this entry Arc. Since there is no Asc with s 6= r such that 1 = Asc, then

there is no way to cancel out the 1 in the cth column of row r. This means that row

r is not used in any null-space vector. Therefore, we delete row r. Furthermore,

we column c as well, because it is now empty, and will get picked out for deletion

during the next cycle of Operation 1.

Operation 3: We desire roughly 10 vectors in the null space. If a matrix is full

rank, and it has 10 more columns than rows, it will have 10 vectors in the null

space. If the matrix is not full rank, it will have more, and we are even happier.

From Table 9.3 on Page 145 we might expect that we will have nullity 1 or 2 by

the time the matrix becomes dense, but it is good to be conservative. Therefore,

we will seek to maintain a number of rows equal to the number of columns plus

10 (or plus the margin if it is not 10). Any extra rows are superfluous. And so we

may wish to delete those rows which have the highest weight. Therefore in this

step we will delete the k heaviest rows, where k = r− c+10.

Note: You might suppose we could eliminate rows of weight 0. This would ba-

sically represent a redundant equation, that earlier was actually equal to some

linear combination of other equations in the system, and which has now been

shown to be redundant. However, there may be useful information in the inactive

part of the matrix (the columns which have been deactivated). Recall, the weight

of a row does not include entries in the inactive columns, because they have been

removed from the sparse matrix data structure. Therefore, we do not touch rows

of weight 0.

Operation 4: Suppose there is a row of weight 1. Then this means that the asso-

ciated variable with that one entry (call it Arc) is equal to zero (i.e. xc = 0) in

any null-space solution. You might imagine that this means we can forget that

this variable exists, and delete column c. But because of the previous note, we do

not wish to do that. The inactive part of the row might be quite dense or useful.

Therefore, we will simulate adding row r to every row which which has an entry

in column c. For each such row s, we will store on our task-list that we must

add rows r and s, in the dense part later (and store the answer in row s). Then

we could artificially zero-out column c, except for entry Arc. Of course, now row

r and column c will play no further role in the algorithm. Furthermore, column

c has only weight 1 now. Therefore, we can immediately execute Operation 2,

which would delete row r and delete column c as well.

D.6 The Pomerance-Smith Algorithm 331

Operation 5: Now suppose there is a row of weight 2. Then this means that the

row (call it r) has two entries that are 1, call them c and c′, and without loss of

generality assume w(c)≤w(c′). Then we can simulate adding row r to every row

s that has an entry in column c. This means that we must store on our task-list

that we must add row r and row s in the dense part of the matrix later (and store

the answer in row s). Also, in the sparse part, the entry Asc will be zeroed out, and

Asc′ will be toggled (flipped from its current value to the opposite). Note that this

will leave column c with only the entry Arc, and so we can immediately execute

an Operation 2. There is a very rapid way to execute all this. Column c′ should

be changed into the logical-XOR of column c and column c′. Column c and row

r can now be deleted.

Operation 5T : This step is mentioned in the paper as a suggestion by Odlyzko,

but is not explicitly numbered. Suppose there is a column of weight 2. Call the

two entries in it Arc and Asc, with w(r) < w(s). Then we could add rows r and

s together (storing the sum in row r). After this, column c has only one entry,

namely Asc. This means we can immediately execute Operation 2, which would

delete column c and row s.

The reader may want to take a moment and review each of the operations, to

understand what they do and to ensure that indeed these are not going to affect our

search for null-space vectors. In fact, the Pomerance-Smith Algorithm just executes

these six operations in a loop, some repeating more often than others. After this is

done, the dense matrix data structure has to be updated. We simply go through the

task-list, and execute the row additions stated there.

Careful examination of each operation will yield that only Operation 3 destroys

null-space vectors. However, it does so in such a way as to ensure that at least 10

will be found. That means we will know about 1023 of the vectors in the null space

(counting all linear combinations of the 10, but of course one of them is the zero

vector, which is boring). Thus, we know the algorithm is correct.

D.6.4 The Actual Algorithm

Later researchers have made it clear that one can do the operations in different

orders, and one can even leave some out. However, Pomerance-Smith, in the original

paper worked as follows. First, do Operation 0 to remove 5% of the columns.

Next do Operation 1 as many times as possible. Then do Operation 2 as many

times as possible. If Operation 2 was able to do anything at all, then restart with

Operation 1. If not, then do Operation 3 as many times as possible. If Operation 3

was able to do anything at all, restart with Operation 1, but otherwise do Operation 4

as many times as possible. Again, if Operation 4 accomplished anything, return to

Operation 1. If not, then Operation 5 and Operation 5T are treated as equals—do

them as many times as possible. If something happened, then return to Operation 1.

Otherwise do Operation 0 to the ⌈n/1000⌉ heaviest columns and continue with Op-

eration 1.

332 D Options for Very Sparse Matrices

This seems awfully heuristic, and it is. But it is still an algorithm, because it is

guaranteed to terminate. Each of the operations, if successfully applied, will reduce

the size of the matrix. Sometimes an operation cannot be applied, and in fact, this

is the only way to go from Operation i to Operation i + 1. On the other hand, each

time Operation 0 is called, it will succeed in removing some number of columns. It

cannot fail. And so, with at most 950 calls to Operation 0, since the first removes

5% and all later applications of it remove 0.1%, the algorithm will terminate.

D.6.5 Fill-in and Memory Management

Now we will look at the impact on the number of non-zero entries in the sparse

part of the matrix, for each of these operations. Careful examination will reveal that

only Operations 5 and 5T can result in an entry which is 0 turning into an entry

which is 1, in the sparse part of the matrix. Thus, the number of non-zero entries in

the sparse part of the matrix (the active columns) will never increase, other than with

Operation 5 and 5T . In fact, Operations 0, 1, 2, 3, and 4 will frequently reduce the

number of ones, and in the case of Operations 0 and 3, perhaps very significantly. It

turns out with Operations 5 and 5T , the number of non-zeros will actually decrease

as well, but it takes a bit of work to prove it.

For Operation 5, the net number of new non-zero entries introduced into column

c′ will be w(c)− 2w(c∩ c′), because those in the intersection are -1 to the weight

and those not in the intersection are +1 to the weight. But, this is offset by erasing

column c. And so we have a total of −2w(c∩ c′). In other words, if columns c and

c′ are totally disjoint, then the ones in column c simply move into column c′, except

for the one in row r which does not survive anyway. If the intersection is non-empty,

those not in the intersection move over (which creates 0) and those in the intersection

annihilate a one in column c′ for a net reduction of two each. Of course, the erasure

of row r would remove two entries as well (we would not be doing this operation if

row r did not have 2 entries in it), for a net decrease of 1+2w(c∩ c′), being careful

to not count the benefit of zeroing out Arc twice—once in the removal of row r and

once in the removal of column c. Thus, Operation 5 also strictly reduces the number

of ones in the sparse part of the matrix.

For Operation 5T , the net number of new non-zero entries introduced into row

r will be w(s)− 2w(r∩ s), for reasons the same as in the previous paragraph. But,

when we erase row s, we get a net change of−2w(r∩s). Next, the erasure of column

c will remove two elements, namely Arc and Asc, the latter of which we have already

counted. So the net decrease is 1+2w(r∩ s). The relationship between this step and

the previous is the reason for the notation Operation 5T .

From the point of view of memory-management, if a sparse data structure is used,

then the amount of memory used is directly proportional to the number of entries.

Since this never increases, that means if the computer can hold the matrix initially,

it can process it to the end. This is certainly not the case for whole categories of

matrix techniques.

D.6 The Pomerance-Smith Algorithm 333

In the paper [193], Pomerance and Smith note that the algorithm proceeds very

slowly, until the average weight of each row in the sparse part is about three. Then he

conjectures that some sort of threshold is crossed, because suddenly there is an enor-

mous number of erasures of rows and columns. In the 1960s, René Thom created

a theory called Catastrophe Theory which is the study of thresholds where func-

tions change discontinuously, as well as thresholds where functions change very

rapidly but are nevertheless mathematically continuous. Since this is the effect we

see here, when the weight of the rows is roughly 3.3±0.3, then it is natural to deem

this a “catastrophe” from that theory, but in a very positive sense. Pomerance and

Smith suggest the world “miracle” might have been a better choice. The catastro-

phe/miracle itself is suddenly a long series of Operation 1–5,5T which dramatically

reduce the non-zero count of the matrix, until it is zero, with no uses of Operation

0.

D.6.6 Technicalities

These are some unimportant technicalities that come up in the implementation.

D.6.6.1 Why not Do Operation 0 only Once?

It might seem that since Operation 0 might move many columns into the dense

storage area, in several stages throughout the algorithm, one could just simply pick

a larger number than 5%, and move them over earlier. However, this is essentially

the algorithm by Odlyzko [183] on which this algorithm was based [193].

In practice, in [193] it is claimed that one moves fewer columns with Pomerance-

Smith than with Odlyzko’s implementation of this idea. Furthermore, there was

never a good estimate of how many columns should be moved (i.e. declared

dense)—with consequences in the event of overbidding. In [193] not only are ex-

actly the right number moved, with no over-shooting, but information in the middle

of the algorithm is used to determine that as the matrix evolves.

Also, it is noteworthy to mention the idea of splitting the matrix into a dense part

and spare-part, reducing the sparse part, and then re-acting those operations on the

dense part, finishing with dense linear algebra, is due to Odlyzko [183].

D.6.6.2 Random Matrices

For test purposes, it might be convenient to generate many random matrices of

the kind that would occur in the QS or NFS, without actually carrying out the QS.

This model is suggested by [193]. One requires a parameter D, typically 2 > D > 3

for the QS and slightly more for the NFS. The probability of an entry being 1 for

column i is given by min(1/2,D/i).

334 D Options for Very Sparse Matrices

The number of columns C that get declared dense by Operation 0 is very pre-

dictable. Doing a power-regression on the data in [193] one gets that the following

model

C ≈ 0.10767D2.1176n0.84621−1296.5

with average error 1.3% and worse-case error of 3.63%.

D.6.6.3 Only Getting Part of the Null Space

This algorithm will produce a number of null-space basis-vectors equal to “mar-

gin”, which is recommended to be roughly 10. This is a basis for a 10-dimensional

subspace of the null space, and so since we are over GF(2), there would be 1023

non-zero vectors.

What if there are more null space vectors to be found? Suppose one has an m×n

matrix A, and one believes that the rank r is between r1 ≤ r ≤ r2. Then the nullity

is at most n− r2, and so this is a safe value for margin. If one does not have a lower

bound on the rank (an upper bound on the nullity) then perhaps one should try a

different algorithm. One could imagine it might be useful to attempt using all the

operations except Operation 3. However, the number of rows might not reduce fast

enough in that case and it would be likely that the matrix would have (eventually)

many more rows than columns, and things would bog down.

The previous paragraph applies only to operations other than factoring. When

factoring, having 1023 null space vectors is overkill. There is no need for more than

that. Even so, it is somewhat distressing to realize that if there were two very high

weight rows, but which differed in only 1–4 positions, the rows would be deleted

because of their weight. But, their sum would be a row with weight 1–4, which is

excellently useful in this algorithm or any other.

One could imagine a matrix where Pomerance-Smith fails, because not enough

of Operations 1–5 occur and Operation 0 is called too many times leaving far too

large of a matrix for dense operations. Yet it could have two or three rows which

were dense and thus deleted, yet whose sum is very low weight. That low weight

vector could be used to clear out a few columns, producing new low weight rows, et

cetera. . .

D.6.7 Cremona’s Implementation

John Cremona mentioned at SAGE Days #10 in Nancy, Lorraine, France that

he uses this algorithm for solving large sparse linear systems of equations. He has

implemented the algorithm and it is part of SAGE. Furthermore, it can work over

any field. Looking over the list of operations, one can see that this is true provided

that one trivially add a few scalar multiplications or negations in the right spots.

D.6 The Pomerance-Smith Algorithm 335

D.6.8 Further Reading

The author suggests the following further reading

• “Reduction of Huge, Sparse Matrices over Finite Fields via Created Catastro-

phes,” by Carl Pomerance and J. Smith [193], published in Experimental Mathe-

matics, in 1992.

• “An Approximate Probabilistic Model for Structured Gaussian Elimination”, by

Edward Bender and E. Rodney Canfield [41] published in The Journal of Algo-

rithms, in 1999.

Appendix E

Inspirational Thoughts, Poetry and Philosophy

The following reflects what I have long believed, though I must confess I have

lacked the expressiveness to state it. This quote is notable not only for what it com-

municates, but for its age as well. Written about 450 years ago, it still rings true

(despite the odd spelling). I am confident many mathematicians alive today would

agree with it.

The ignoraunte multitude doeth, but as it was euer wonte, enuie that knoweledge, whiche

thei can not attaine, and wishe all men ignoraunt, like unto themself. . . Yea, the pointe in

Geometrie, and the unitie in Arithmetike, though bothe be undiuisible, doe make greater

woorkes, & increase greater multitudes, then the brutishe bande of ignoraunce is hable to

withstande. . .

(Robert Recorde, 1557, quoted from [121, Ch. 3]).

But yet one commoditie moare. . . I can not omitte. That is the filying, sharpenyng, and

quickenyng of the witte, that by practice of Arithmetike doeth insue. It teacheth menne and

accustometh them, so certainly to remember thynges paste: So circumspectly to consider

thynges presente: And so prouidently to forsee thynges that followe: that it maie truelie bee

called the File of witte.

(Robert Recorde, 1557, quoted from [121, Ch. 17]).

Note also, a third quote can be found on page xv of this book. The Welsh mathe-

matician Robert Recorde is mostly known for inventing the equal sign. The follow-

ing quote describes that invention.

And to avoide the tediouse repetition of these woordes : is equalle to : I will sette as I doe

often in woorke use, a pair of paralleles, or Gemowe lines of one lengthe, thus: =====,

bicause noe .2. thynges, can be moare equalle.

(Robert Recorde, quoted from [100]).

Recorde lived 1510 to 1558, and was a faculty member at Oxford and at Cam-

bridge. He wrote several books on algebra and geometry, as is credited with the first

translation of Euclid’s Elements into English, because he believed “it would be of

use to Merchants.” The four quotes given in this book are from The Whetstone of

Witte, an algebra text, also intended for the merchant community. A whetstone is a

stone used for sharpening, serving like a file but natural instead of man-made.

337

338 E Inspirational Thoughts, Poetry and Philosophy

This spirit of trying to bring mathematics into the lives of those otherwise inter-

ested in business is one that I can admire, since the majority of my teaching obliga-

tions are for the freshman mathematics requirement of students attempting degrees

in business, accounting, finance, marketing, and related fields.

The innovation of the equal sign, or the utility of the Euclidean Geometry to “file

the wit” of future merchants have both stuck with us, as any high school student

is aware. Luckily for us, not all of his innovations have stuck with us however.

He invented the term “zenzizenzizenzike” for x8. This follows naturally from using

“zenzike” for x2, and “zenzizenzike” for x4. Imagine how complex our vocabulary

would become to describe 2128.

References

1. BOINC: Berkeley open infrastructure for networked computing. Available at http://

boinc.berkeley.edu/

2. Magma. Software Package. Available at http://magma.maths.usyd.edu.au/

magma/

3. Maple. Software Package. Available at http://www.maplesoft.com/

4. Mathematica. Software Package. Available at http://www.wolfram.com/

products/mathematica/index.html

5. Matlab. Software Package. Available at http://www.mathworks.com/

6. MiniSAT. Software Package. Available at http://www.cs.chalmers.se/

Cs/Research/FormalMethods/MiniSat/ or http://minisat.se/Papers.

html

7. Sage. Software Package. Available at http://www.sagemath.org/

8. SETI@home classic. See http://setiathome.berkeley.edu/classic.php

9. Singular. Software Package. Available at http://www.singular.uni-kl.de/

10. Specification for the Advanced Encryption Standard: Federal information processing stan-

dards publication 197 (FIPS-197). Tech. rep., National Institute of Standards and Technology

(NIST) (2001)

11. Personal communications with Adi Shamir

12. Aggarwal, D., Maurer, U.: Breaking RSA generically is equivalent to factoring. In: A. Joux

(ed.) Advances in Cryptology—Proc. of EUROCRYPT, Lecture Notes in Computer Science,

vol. 5479, pp. 36–53. Springer-Verlag (2009)

13. Aho, A., Hopcroft, J., Ullman, J.: The Design and Analysis of Computer Algorithms, second

edn. Addison-Wesley (1974)

14. Albrecht, M.: Algebraic attacks on the courtois toy cipher. Master’s thesis, University of

Bremen (Universität Bremen), Department of Computer Science (2006)

15. Albrecht, M., Bard, G., Hart, W.: Efficient multiplication of dense matrices over GF(2).
Submitted to Transactions on Mathematical Software (2008). Available at http://www.

math.umd.edu/˜bardg/albrecht_bard_hart.pdf

16. Albrecht, M., Cid, C.: Algebraic techniques in differential cryptanalysis. Cryptology ePrint

Archive, Report 2008/177 (2008). Available at http://eprint.iacr.org/2008/

177

17. Albright, B.: An introduction to simulated annealing. College Mathematics Journal 38(1),

37–42 (2007)

18. Apéry, R.: Irrationalité de ζ (2) et ζ (3). Astérisque 61, 11–13 (1979)

19. Arditti, D., Berbain, C., Billet, O., Gilbert, H.: Compact FPGA implementations of QUAD.

In: F. Bao, S. Miller (eds.) Proceedings of the 2007 ACM Symposium on Information, Com-

puter and Communications Security, (ASIACCS’07), pp. 347–349. ACM (2007)

339

340 References

20. Arditti, D., Berbain, C., Billet, O., Gilbert, H., Patarin, J.: QUAD: Overview and recent de-

velopments. In: E. Biham, H. Handschuh, S. Lucks, V. Rijmen (eds.) Symmetric Cryp-

tography, Dagstuhl Seminar Proceedings, vol. 07021. Internationales Begegnungs- und

Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany (2007)

21. Arlazarov, V., Dinic, E., Kronrod, M., Faradzev, I.: On economical construction of the tran-

sitive closure of a directed graph. Dokl. Akad. Nauk. SSSR 194(11) (1970). (in Russian),

English Translation in Soviet Math Dokl

22. Armknecht, F.: A linearization attack on the Bluetooth key stream generator. Cryptology

ePrint Archive, Report 2002/191 (2002). Available at http://eprint.iacr.org/

2002/191

23. Armknecht, F.: Improving fast algebraic attacks. In: B.K. Roy, W. Meier (eds.) Proc. of Fast

Software Encryption (FSE’04), Lecture Notes in Computer Science, vol. 3017, pp. 65–82.

Springer-Verlag (2004)

24. Armknecht, F., Ars, G.: Introducing a new variant of fast algebraic attacks and minimiz-

ing their successive data complexity. In: E. Dawson, S. Vaudenay (eds.) Proc. of Mycrypt,

Lecture Notes in Computer Science, vol. 3715, pp. 16–32. Springer-Verlag (2005)

25. Armknecht, F., Krause, M.: Algebraic attacks on combiners with memory. In: D. Boneh (ed.)

Advances in Cryptology—Proc. of CRYPTO, Lecture Notes in Computer Science, vol. 2729,

pp. 162–175. Springer-Verlag (2003)

26. Ars, G., Faugère, J.C., Imai, H., Kawazoe, M., Sugita, M.: Comparison between XL and

Gröbner Basis algorithms. In: P.J. Lee (ed.) Advances in Cryptology—Proc. of ASIACRYPT,

Lecture Notes in Computer Science, vol. 3329, pp. 338–353. Springer-Verlag (2004)

27. Atkins, D., Graff, M., Lenstra, A.K., Leyland, P.C.: The magic words are squeamish os-

sifrage. In: J. Pieprzyk, R. Safavi-Naini (eds.) Advances in Cryptology—Proc. of ASI-

ACRYPT, Lecture Notes in Computer Science, vol. 917, pp. 263–277. Springer-Verlag (1994)

28. Atkinson, M., Santoro, N.: A practical algorithm for boolean matrix multiplication. Infor-

mation Processing Letters (1988)

29. Bard, G.: Algorithms for fast matrix operations. Tech. rep., University of Maryland, Applied

Mathematics and Scientific Computation Program (2005). Scholarly Paper for M.Sc. in

Applied Math, available on the author’s web-page

30. Bard, G.: Achieving a log(n) speed up for boolean matrix operations and calculating the

complexity of the dense linear algebra step of algebraic stream cipher attacks and of integer

factorization methods. Cryptology ePrint Archive, Report 2006/163 (2006). Available at

http://eprint.iacr.org/2006/163

31. Bard, G.: Algorithms for the solution of linear and polynomial systems of equations over

finite fields, with applications to cryptanalysis. Ph.D. thesis, Department of Applied Mathe-

matics and Scientific Computation, University of Maryland at College Park (2007). Available

at http://www.math.umd.edu/˜bardg/bard_thesis.pdf

32. Bard, G.: Extending SAT-Solvers to low-degree extension fields of GF(2). Presented at the

Central European Conference on Cryptography (2008). Available at http://www.math.

umd.edu/˜bardg/extension_fields.pdf

33. Bard, G., Courtois, N., Jefferson, C.: Efficient methods for conversion and solution of sparse

systems of low-degree multivariate polynomials over GF(2) via SAT-Solvers. Cryptology

ePrint Archive, Report 2007/024 (2006). Available at http://eprint.iacr.org/

2007/024.pdf

34. Bard, G., Miller, R., Vali, S.: Lowering fill-in for Gaussian Elimination on sparse matrices

over finite fields. In preparation (2009)

35. Bard, G.V.: A challenging but feasible blockwise-adaptive chosen-plaintext attack on SSL.

In: M. Malek, E. Fernández-Medina, J. Hernando (eds.) Proceedings of the International

Conference on Security and Cryptography (SECRYPT’06), pp. 99–109. INSTICC Press

(2006). Available at http://eprint.iacr.org/2006/136/

36. Barkan, E., Biham, E., Keller, N.: Instant ciphertext-only cryptanalysis of GSM Encrypted

communication. In: D. Boneh (ed.) Advances in Cryptology—Proc. of CRYPTO, Lecture

Notes in Computer Science, vol. 2729, pp. 600–616. Springer-Verlag (2003)

References 341

37. Barkee, B., Can, D.C., Ecks, J., Moriarty, T., Ree, R.F.: Why you cannot even hope to use

Gröbner bases in public-key cryptography—an open letter to a scientist who failed and a

challenge to those who have not yet failed. Journal of Symbolic Computations 18(6), 497–

501 (1994)

38. Bartee, T.C.: Digital Computer Fundamentals, sixth edn. McGraw Hill (1985)

39. Baur, W., Strassen, V.: The complexity of partial derivatives. Theoretical Computer Science

(1983)

40. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of symmetric

encryption: Analysis of the DES modes of operation. In: Proc. 38th Symposium on Founda-

tions of Computer Science. IEEE (1997)

41. Bender, E., Canfield, E.R.: An approximate probabilistic model for structured Gaussian Elim-

ination. The Journal of Algorithms (1999)

42. Berbain, C., Gilbert, H., Patarin, J.: QUAD: A practical stream cipher with provable security.

In: S. Vaudenay (ed.) Advances in Cryptology—Proc. of EUROCRYPT, Lecture Notes in

Computer Science, vol. 4004, pp. 109–128. Springer-Verlag (2006)

43. Bernstein, D.: Matrix inversion made difficult. Unpublished Manuscript (1995). Available

on http://cr.yp.to/papers/mimd.ps

44. Bernstein, D.: Response to slid pairs in Salsa20 and Trivium. Technical Report: Available

at: http://cr.yp.to/snuffle/reslid-20080925.pdf (2008)

45. Bernstein, D., Chen, T.R., Cheng, C.M., Lange, T., Yang, B.Y.: ECM on graphics cards. In:

A. Joux (ed.) Advances in Cryptology—Proc. of EUROCRYPT, Lecture Notes in Computer

Science, vol. 5479, pp. 483–501. Springer-Verlag (2009)

46. Berre, D.L., Simon, L.: Special volume on the SAT 2005 competitions and evaluations. Jour-

nal of Satisfiability (2006)

47. Biham, E., Dunkelman, O., Indesteege, S., Keller, N., Preneel, B.: How to steal cars—a

practical attack on Keeloq (2008)

48. Biryukov, A., Shamir, A., Wagner, D.: Real time cryptanalysis of A5/1 on a PC. In:

B. Schneier (ed.) Fast Software Encryption (FSE’00), Lecture Notes in Computer Science,

vol. 1978, pp. 1–18. Springer-Verlag (2000)

49. Bogdanov, A.: Attacks on the Keeloq block cipher and authentication systems. In: 3rd Con-

ference on RFID Security 2007 (RFIDSec’07) (2007)

50. Bogdanov, A.: Cryptanalysis of the Keeloq block cipher. Cryptology ePrint Archive, Report

2007/055 (2007). Available at http://eprint.iacr.org/2007/055/

51. Bogdanov, A.: Linear slide attacks on the Keeloq block cipher. In: D. Pei, M. Yung, D. Lin,

C. Wu (eds.) INSCRYPT’07, Lecture Notes in Computer Science, vol. 4990, pp. 66–80.

Springer-Verlag (2007)

52. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and

graph planarity using PQ-tree algorithms. J. Comput. Systems Sci. 13, 335–379 (1976)

53. Boothby, T.J., Bradshaw, R.W.: Bitslicing and the method of four russians over larger finite

fields. Submitted to a journal (2009). Available at http://arxiv.org/abs/0901.

1413

54. Bressourd, D.M.: Factorization and Primality Testing. Undergraduate Texts in Mathematics.

Springer-Verlag (1989)

55. Bunch, J., Hopcroft, J.: Triangular factorization and inversion by fast matrix multiplication.

Math Comp. 28(125) (1974)

56. Cannière, C.D.: Trivium: A stream cipher construction inspired by block cipher design prin-

ciples. In: S.K. Katsikas, J. Lopez, M. Backes, S. Gritzalis, B. Preneel (eds.) Proceedings

of the 9th International Conference on Information Security, ISC’06, Lecture Notes in Com-

puter Science, vol. 4176, pp. 171–186. Springer-Verlag (2006)

57. Chaitin, G.J., Auslander, M.A., Chandra, A.K., Cocke, J., Hopkins, M.E., Markstein, P.W.:

Register allocation via coloring. Computer Languages 6, 47–57 (1981)

58. Cid, C., Albrecht, M., Augot, D., Canteaut, A., Weinmann, R.P.: Algebraic cryptanalysis of

symmetric primitives. Tech. Rep. D.STVL.7, ECRYPT: The European Union Network of

Excellence in Cryptography (2008)

342 References

59. Cohen, H.: A course in Computational Algebraic Number Theory. Springer-Verlag (1993)

60. Coppersmith, D.: Solving linear equations over GF(2): the Block Lanczos algorithm. Linear

Algebra and its Applications 192, 33–60 (1993)

61. Coppersmith, D.: Solving homogeneous linear equations over GF(2) via Block Wiedemann

algorithm. Mathematics of Computation 62(205), 333–350 (1994)

62. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. of Sym-

bolic Computation 9 (1990)

63. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, second edn. MIT

Press, McGraw-Hill Book Company (2001)

64. Courtois, N.: The security of cryptographic primitives based on multivariate algebraic prob-

lems: MQ, MinRank, IP, HFE. Ph.D. thesis, Paris VI (2001). Available at http://www.

nicolascourtois.net/phd.pdf

65. Courtois, N.: The security of Hidden Field Equations (HFE). In: D. Naccache (ed.) Cryptog-

raphers’ Track, RSA Conference, Lecture Notes in Computer Science, vol. 2020, pp. 266–

281. Springer-Verlag (2001)

66. Courtois, N.: Higher order correlation attacks, XL algorithm and cryptanalysis of Toyocrypt.

In: P.J. Lee, C.H. Lim (eds.) Proc. of ICISC, Lecture Notes in Computer Science, vol. 2587,

pp. 182–199. Springer-Verlag (2002)

67. Courtois, N.: Fast algebraic attacks on stream ciphers with linear feedback. In: D. Boneh

(ed.) Advances in Cryptology—Proc. of CRYPTO, Lecture Notes in Computer Science, vol.

2729, pp. 176–194. Springer-Verlag (2003)

68. Courtois, N.: Generic attacks and the security of Quartz. In: Y. Desmedt (ed.) Public

Key Cryptography (PKC’03), Lecture Notes in Computer Science, vol. 2567, pp. 351–364.

Springer-Verlag (2003)

69. Courtois, N.: Algebraic attacks on combiners with memory and several outputs. In: C. Park,

S. Chee (eds.) Proc. of ICISC, Lecture Notes in Computer Science, vol. 3506, pp. 3–20.

Springer-Verlag (2004)

70. Courtois, N.: Algebraic attacks over GF(2k), application to HFE Challenge 2 and Sflash-v2.

In: F. Bao, R.H. Deng, J. Zhou (eds.) Public Key Cryptography (PKC’04), Lecture Notes in

Computer Science, vol. 2947, pp. 201–217. Springer-Verlag (2004)

71. Courtois, N.: General principles of algebraic attacks and new design criteria for components

of symmetric ciphers. In: H. Dobbertin, V. Rijmen, A. Sowa (eds.) Proc. AES 4 Conference,

Lecture Notes in Computer Science, vol. 3373, pp. 67–83. Springer-Verlag (2004)

72. Courtois, N.: Short signatures, provable security, generic attacks, and computational security

of multivariate polynomial schemes such as HFE, Quartz and Sflash. Cryptology ePrint

Archive, Report 2004/143 (2004). Available at http://eprint.iacr.org/2004/

143

73. Courtois, N.: How fast can be algebraic attacks on block ciphers? In: E. Biham, H. Hand-

schuh, S. Lucks, V. Rijmen (eds.) Symmetric Cryptography, Dagstuhl Seminar Proceedings,

vol. 07021. Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI),

Schloss Dagstuhl, Germany (2007)

74. Courtois, N., Bard, G.: Algebraic and slide attacks on Keeloq. Cryptology ePrint Archive,

Report 2007/062 (2007). Available at http://eprint.iacr.org/2007/062

75. Courtois, N., Bard, G., Ault, S.: Statistics of random permutations and the cryptanalysis of

periodic block ciphers. Cryptology ePrint Archive, Report 2009/186 (2009). Available at

http://eprint.iacr.org/2009/186

76. Courtois, N., Bard, G.V.: Algebraic cryptanalysis of the data encryption standard. In: S.D.

Galbraith (ed.) IMA International Conference on Cryptography and Coding Theory, Lecture

Notes in Computer Science, vol. 4887, pp. 152–169. Springer-Verlag (2007). Available at

http://eprint.iacr.org/2006/402

77. Courtois, N., Daum, M., Felke, P.: On the security of HFE, HFEv- and Quartz. In: Y. Desmedt

(ed.) Public Key Cryptography (PKC’03), Lecture Notes in Computer Science, vol. 2567, pp.

337–350. Springer-Verlag (2003)

References 343

78. Courtois, N., Goubin, L., Patarin, J.: SFLASHv3, a fast asymmetric signature scheme. Cryp-

tology ePrint Archive, Report 2003/211 (2003). Available at http://eprint.iacr.

org/2003/211

79. Courtois, N., Meier, W.: Algebraic attacks on stream ciphers with linear feedback. In: E. Bi-

ham (ed.) Advances in Cryptology—Proc. of EUROCRYPT, Lecture Notes in Computer

Science, vol. 2656, pp. 345–359. Springer-Verlag (2003)

80. Courtois, N., Patarin, J.: About the XL algorithm over GF(2). In: M. Joye (ed.) Cryptogra-

phers’ Track, RSA Conference, Lecture Notes in Computer Science, vol. 2612, pp. 141–157.

Springer-Verlag (2003)

81. Courtois, N., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined systems of

equations. In: Y. Zheng (ed.) Advances in Cryptology—Proc. of ASIACRYPT, Lecture

Notes in Computer Science, vol. 2501, pp. 267–287. Springer-Verlag (2002). Available at

http://eprint.iacr.org/2002/044/

82. Courtois, N., Shamir, A., Patarin, J., Klimov, A.: Efficient algorithms for solving overde-

fined systems of multivariate polynomial equations. In: B. Preneel (ed.) Advances in

Cryptology—Proc. of EUROCRYPT, Lecture Notes in Computer Science, vol. 1807, pp.

392–407. Springer-Verlag (2000)

83. Courtois, N.T., Bard, G.V., Bogdanov, A.: Periodic ciphers with small blocks and cryptanal-

ysis of Keeloq. Tatra Mountains Mathematical Publications, Slovak Academy of Sciences

41, 167–188 (2008)

84. Courtois, N.T., Bard, G.V., Wagner, D.: Algebraic and slide attacks on Keeloq. In: K. Nyberg

(ed.) Proc. of Fast Software Encryption (FSE’08), Lecture Notes in Computer Science, vol.

5086, pp. 97–115. Springer-Verlag (2008)

85. Courtois, N.T., Nohl, K., O’Neil, S.: Algebraic attacks on the Crypto-1 stream cipher in Mi-

Fare Classic and Oyster Cards. Cryptology ePrint Archive, Report 2008/166 (2008). Avail-

able at http://eprint.iacr.org/2008/166

86. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Compu-

tational Algebraic Geometry and Commutative Algebra, second edn. Undergraduate Texts

in Mathematics. Springer-Verlag (2006)

87. Creignou, N., Daude, H.: Satisfiability threshold for random XOR-CNF Formulas. Discrete

Applied Mathematics (1999)

88. Curtin, M.: Brute Force: Cracking the Data Encryption Standard. Springer-Verlag (2005)

89. Daemen, J., Rijmen, V.: Rijndael. AES Proposal (1999). Available at http://csrc.

nist.gov/CryptoToolkit/aes/rijndael/Rijndael-ammended.pdf

90. Danzig, G.: Maximization of a linear function of variables subject to linear inequalities. In:

T.J.C. Koopmans (ed.) Activity Analysis of Production and Allocation, pp. 339–347. Wiley

(1951)

91. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Commu-

nications of the ACM 5(7), 394–397 (1962)

92. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the

Association of Computing Machinery 7(3), 201–215 (1960)

93. Davis, T.: Direct Methods for Sparse Linear Systems. Society for Industrial and Applied

Mathematics (2006)

94. Dawson, S.: Code hopping decoder using a PIC16C56. Tech. Rep. Technical Report AN642,

Microchip Corporation. Available at http://www.keeloq.boom.ru/decryption.

pdf

95. Ding, J., Gower, J., Schmidt, D.: Zhuang-Zi: A new algorithm for solving multivariate poly-

nomial equations over a finite field. Tech. rep., University of Cincinnati (2006)

96. Ding, J., Gower, J., Schmidt, D.: Zhuang-Zi: A new algorithm for solving multivariate poly-

nomial equations over a finite field. Cryptology ePrint Archive, Report 2006/038 (2006).

Available at http://eprint.iacr.org/2006/038, and presented at the IMA An-

nual Workshop on Algorithms in Algebraic Geometry

97. Ding, J., Gower, J.E., Schmidt, D.S.: Multivariate Public Key Cryptosystems. Springer Ver-

lag (2006)

344 References

98. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: A. Joux (ed.)

Advances in Cryptology—Proc. of EUROCRYPT, Lecture Notes in Computer Science, vol.

5479, pp. 278–299. Springer-Verlag (2009)

99. Dixon, J.: Asymptotically fast factorization of integers. Mathematics of Computation 36,

255–260 (1981)

100. Dominus, M.J.: The universe of discourse, Friday 07 April 2006. Blog. See http://

blog.plover.com/math/recorde.html

101. Dummit, D., Foote, R.: Abstract Algebra, third edn. Wiley (2003)

102. Een, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination.

In: F. Bacchus, T. Walsh (eds.) Theory and Applications of Satisfiability Testing (SAT’05),

Lecture Notes in Computer Science, vol. 3569, pp. 61–75. Springer-Verlag (2005)

103. Eén, N., Sörensson, N.: An extensible SAT-solver. In: E. Giunchiglia, A. Tacchella (eds.)

Theory and Applications of Satisfiability Testing (SAT’03), Lecture Notes in Computer Sci-

ence, vol. 2919, pp. 333–336. Springer-Verlag (2003)

104. Eén, N., Sörensson, N.: Minisat — a SAT solver with conflict-clause minimization. In:

F. Bacchus, T. Walsh (eds.) Proc. Theory and Applications of Satisfiability Testing (SAT’05),

Lecture Notes in Computer Science, vol. 3569, pp. 61–75. Springer-Verlag (2005)

105. Eibach, T., Pilz, E., Völkel, G.: Attacking Bivium using SAT solvers. In: H.K. Büning,

X. Zhao (eds.) Theory and Applications of Satisfiability Testing (SAT ’08), Lecture Notes in

Computer Science, vol. 4996, pp. 63–76. Springer-Verlag (2008)

106. Eisenbarth, T., Kasper, T., Moradi, A., Paar, C., Salmasizadeh, M., Shalmani, M.T.M.: On the

power of power analysis in the real world: A complete break of the KeeLoqCode Hopping

Scheme. In: D. Wagner (ed.) CRYPTO, Lecture Notes in Computer Science, vol. 5157, pp.

203–220. Springer-Verlag (2008)

107. Erickson, J.: Algebraic cryptanalysis of SMS4. Tech. rep., Taylor University (2008)

108. Eschenauer, L., Gligor, V.: A key-management scheme for distributed sensor networks. In:

V. Atluri (ed.) In Proceedings of the 9th ACM Conference on Computer and Communication

Security (CCS’02), pp. 41–47. ACM (2002)

109. Faugère, J.C.: A new efficient algorithm for computing Gröbner Bases (F4). Journal of Pure

and Applied Algebra 139, 61–88 (1999)

110. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without reduction to

zero (F5). In: Workshop on Applications of Commutative Algebra. ACM Press, Catania,

Italy (2002)

111. Faugère, J.C., Joux, A.: Algebraic cryptanalysis of Hidden Field Equation (HFE) cryptosys-

tems using Gröbner Bases. In: D. Boneh (ed.) Advances in Cryptology—Proc. of CRYPTO,

Lecture Notes in Computer Science, vol. 2729, pp. 44–60. Springer-Verlag (2003)

112. Fedin, S.S., Kulikov, A.S.: Automated proofs of upper bounds on the running time of splitting

algorithms [English translation, original is in Russian]. Journal of Mathematical Sciences

134(5), 2383–2391 (2006)

113. Ferguson, N., Schroeppel, R., Whiting, D.: A simple algebraic representation of Rijndael. In:

S. Vaudenay, A.M. Youssef (eds.) Proc. Selected Areas in Cryptography (SAC01), Lecture

Notes in Computer Science, vol. 2259, pp. 103–111. Springer-Verlag (2001)

114. Fiorini, C., Martinelli, E., Massacci, F.: How to fake an RSA signature by encoding modular

root finding as a SAT problem. Discrete Applied Mathematics 130(2), 101–127 (2003)

115. Fischer, S.: Analysis of lightweight stream ciphers. Ph.D. thesis, École Polytechnique

Fédéral de Lausanne (2008)

116. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press (2008).

http://algo.inria.fr/flajolet/Publications/book.pdf

117. Fleischmann, P., Michler, G., Roelse, P., Rosenboom, J., Staszewski, R., Wagner, C., Weller,

M.: Linear algebra over small finite fields on parallel machines. Tech. rep., Universität Essen,

Fachbereich Mathematik, Essen (1995)

118. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pacific Journal of

Mathematics 15, 835–855 (1965)

119. Gallian, J.A.: Contemporary Abstract Algebra. Heath (1986)

References 345

120. Garfinkel, S., Spafford, G.: Practical Unix & Internet Security, 2nd edn. O’Reilly (1996)

121. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, second edn. Cambridge Univer-

sity Press (2003)

122. Gerver, J.: Factoring large numbers with a quadratic sieve. Mathematics of Computation 41,

287–294 (1983)

123. Giusti, M.: Some effectivity problems in polynomial ideal theory. In: J. Fitch (ed.) Proc. of

EUROSAM 84, Lecture Notes in Computer Science, vol. 174, pp. 159–171. Springer-Verlag

(1984)

124. Goldstein, R.: Incompleteness: The Proof and Paradox of Kurt Gödel. Great Discoveries. W.

W. Norton & Company (2005)

125. Golomb, S.W.: Shift Register Sequences. Agean Park Press (1981)

126. Golub, G., Loan, C.V.: Matrix Computations, third edn. Johns Hopkins University Press

(1996)

127. Goubin, L., Courtois, N.: Cryptanalysis of the TTM Cryptosystem. In: T. Okamoto (ed.)

Advances in Cryptology—Proc. of ASIACRYPT, Lecture Notes in Computer Science, vol.

1976, pp. 44–57. Springer-Verlag (2000)

128. Granboulan, L., Pornin, T.: Perfect block ciphers with small blocks. In: A. Biryukov (ed.)

Proc. of Fast Software Encryption (FSE’07), Lecture Notes in Computer Science, vol. 4593,

pp. 452–463. Springer-Verlag (2007)

129. Gray, F.: Pulse code communication (1953). USA Patent 2,632,058

130. Greenberg, H.J.: Klee-Minty Polytope shows exponential time complexity of simplex

method. Tech. rep., University of Colorado at Denver (1997). Available at http:

//glossary.computing.society.informs.org/notes/Klee-Minty.pdf

131. Greub, W.: Linear Algebra, fourth edn. Graduate Texts in Mathematics. Springer-Verlag

(1981)

132. Hårvard, Semaev, I.: New technique for solving sparse equation systems. Cryptology ePrint

Archive, Report 2006/475 (2006). Available at http://eprint.iacr.org/2006/

475

133. Havas, G., Wagner, C.: Some performance studies in exact linear algebra, english summary.

In: G. Cooperman, E. Jessen, G.O. Michler (eds.) Worksop on Wide Area Networks and

High Performance Computing, Lecture Notes in Control and Information Science, vol. 249,

pp. 161–170. Springer-Verlag, Essen (1998)

134. Hawkes, P., Rose, G.: Rewriting variables: The complexity of fast algebraic attacks on stream

ciphers. In: Advances in Cryptology—Proc. of CRYPTO, Lecture Notes in Computer Sci-

ence, vol. 3152, pp. 390–406. Springer-Verlag (2004)

135. Hietalahti, M., Massacci, F., Niemelä, I.: DES: A challenge problem for nonmonotonic rea-

soning systems. In: Proc. 8th International Workshop on Non-Monotonic Reasoning (2000)

136. Higham, N.: Accuracy and Stability of Numerical Algorithms, second edn. Society for In-

dustrial and Applied Mathematics (2002)

137. Hirsch, E.A.: New worst-case upper bounds for SAT. Journal of Automated Reasoning 24(4),

397–420 (2000)

138. Hofmeister, T., Schöning, U., Schuler, R., Watanabe, O.: A probabilistic 3-SAT algorithm

further improved. In: H. Alt, A. Ferreira (eds.) 19th Annual Symposium on Theoretical

Aspects of Computer Sciences (STACS’02), Lecture Notes in Computer Science, vol. 2285,

pp. 192–202. Springer-Verlag (2002)

139. Hojsı́k, M., Rudolf, B.: Differential fault analysis of Trivium. In: K. Nyberg (ed.) Fast Soft-

ware Encryption (FSE’08), Lecture Notes in Computer Science, vol. 5086, pp. 158–172.

Springer-Verlag (2008)

140. Hojsı́k, M., Rudolf, B.: Floating fault analysis of Trivium. In: D.R. Chowdhury, V. Rij-

men, A. Das (eds.) Progress in Cryptology (INDOCRYPT’08), Lecture Notes in Computer

Science, vol. 5365, pp. 239–250. Springer-Verlag (2008)

141. Ibara, O.H., Moran, S., Hui, R.: A generalization of the fast LUP matrix decomposition

algorithm and applications. Journal of Algorithms 1(3), 45–56 (1982)

346 References

142. Indesteege, S., Keller, N., Dunkelman, O., Biham, E., Preneel, B.: A practical attack on

Keeloq. In: N.P. Smart (ed.) Advances in Cryptology—Proc. of EUROCRYPT, Lecture Notes

in Computer Science, vol. 4965, pp. 1–18. Springer-Verlag (2008)

143. Jovanovic, D., Janicic, P.: Logical analysis of hash functions. In: B. Gramlich (ed.) Pro-

ceedings of the Frontiers of Combining Systems, Lecture Notes in Artificial Intelligence, vol.

3717, pp. 200–215. Springer-verlag (2005)

144. Joyner, D., Kreminski, R., Turisco, J.: Applied Abstract Algebra. Free Internet Textbook

(2002). Available at http://www.usna.edu/˜wdj/book/book.html

145. Kahn, D.: The Codebreakers, The Comprehensive History of Secret Communication from

Ancient Times to the Internet, 2nd edn. Scribner (1996). First published in 1967

146. Kaltofen, E.: Analysis of Coppersmith’s Block Wiedemann algorithm for the parallel solu-

tion of sparse linear systems. Mathematics of Computation 64(210), 777–806 (1995)

147. Kaltofen, E., Saunders, B.D.: On Wiedemann’s method of solving sparse linear systems. In:

H.F. Mattson, T. Mora, T.R.N. Rao (eds.) Proceedings of the 9th International Symposium

on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Lecture Notes in

Computer Science, vol. 539, pp. 29–38. Springer-Verlag (1991)

148. Karp, R.: Reducibility among combinatorial problems. In: Proc. of Symposium on Complex-

ity of Computer Computations, pp. 85–103. IBM Thomas J. Watson Res. Center, Plenum,

Yorktown Heights, New York (1972)

149. Knuth, D.E.: The Art of Computer Programming, Volume 4A: Enumeration and Backtrack-

ing. Addison-Wesley (2004)

150. Krantz, S.G.: A Primer of Mathematical Writing: Being a Disquisition on Having Your Ideas

Recorded, Typeset, Published, Read & Appreciated. American Mathematical Society (1997)

151. Krantz, S.G.: How to Teach Mathematics, second edn. American Mathematical Society

(1999)

152. Krantz, S.G.: A Mathematician’s Survival Guide: Graduate School and Early Career Devel-

opment. American Mathematical Society (2003)

153. Krantz, S.G.: Mathematical Publishing: A Guidebook. American Mathematical Society

(2005)

154. Krishnamurthy, E.V.: Error-Free Polynomial Matrix Computations. Springer-Verlag (1985)

155. Kutz, M.: The complexity of boolean matrix root computation. In: T. Warnow, B. Zhu (eds.)

Proc. of Computing and Combinatorics, Lecture Notes in Computer Science, vol. 2697, pp.

212–221. Springer-Verlag (2003)

156. LaMacchia, B., Odlyzko, A.: Solving large sparse linear systems over finite fields. In:

A. Menezes, S.A. Vanstone (eds.) Advances in Cryptology—Proc. of CRYPTO, Lecture

Notes in Computer Science, vol. 537, pp. 109–133. Springer-Verlag (1990)

157. Lambert, R.J.: Computational aspects of discrete logarithms. Ph.D. thesis, University of

Waterloo (1996)

158. Lazard, D.: Gröbner-bases, Gaussian Elimination and resolution of systems of algebraic

equations. In: J.A. van Hulzen (ed.) EUROCAL 1983, Lecture Notes in Computer Science,

vol. 162, pp. 146–156. Springer-Verlag (1983)

159. Lenstra, A.K., Jr., H.W.L.: The Development of the Number Field Sieve. Lecture Notes in

Mathematics. Springer-Verlag (1993)

160. Lewis, R.: The Dixon Resultant following Kapur-Saxena-Yung. Tech. rep., Fordham Uni-

versity (2002). Available at http://fordham.academia.edu/RobertLewis/

Papers

161. Lewis, R.: Heuristics to accelerate the dixon resultant. Mathematics and Computers in Sim-

ulation 77(4), 400–407 (2008)

162. Lewis, R., Wester, M.: Comparison of polynomial-oriented computer algebra systems.

SIGSAM Bulletin 33(4), 5–13 (1999)

163. Lewis, R.H., Bridgett, S.: Conic tangency equations and Apollonius problems in biochem-

istry and pharmacology. Mathematics and Computers in Simulation 61(2), 101–114 (2003)

164. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications, revised edn.

Cambridge University Press (1994)

References 347

165. Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and its Applications.

Cambridge University Press (2008)
166. van Lint, J.H., Wilson, R.M.: A Course in Combinatorics, second edn. Cambridge University

Press (2001)
167. Liu, F.H., Lu, C.J., Yang, B.Y.: Secure PRNGs from specialized polynomial maps over any

Fq. In: J. Buchmann, J. Ding (eds.) Post-Quantum Cryptography (PQC’08), Lecture Notes in

Computer Science, vol. 5299, pp. 181–202. Springer-Verlag (2008)
168. Lovász, L.: Normal hypergraphs and the perfect graph conjecture. Discrete Mathematics 2,

253–267 (1972)
169. Markowitz, H.M.: The elimination form of the inverse and its application to linear program-

ming. Management Science 3(3), 255–269 (1957)
170. Marques-Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional satisfiabil-

ity. IEEE Transactions on Computers 45(5), 506–521 (1999)
171. Marraro, L., Massacci, F.: Towards the formal verification of ciphers: Logical cryptanaly-

sis of DES. In: Proc. Third LICS Workshop on Formal Methods and Security Protocols,

Federated Logic Conferences (FLOC-99) (1999)
172. Massacci, F.: Using Walk-SAT and Rel-SAT for cryptographic key search. In: T. Dean (ed.)

Proc. 16th International Joint Conference on Artificial Intelligence, pp. 290–295. Morgan

Kaufmann Publishing (1999)
173. Massacci, F., Marraro, L.: Logical cryptanalysis as a SAT-problem: Encoding and analysis

of the US data encryption standard. Journal of Automated Reasoning 24 (2000)
174. Personal communications with Mate Soos
175. Maximov, A., Biryukov, A.: Two trivial attacks on Trivium. In: C.M. Adams, A. Miri, M.J.

Wiener (eds.) Proc. Selected Areas in Cryptography (SAC07), Lecture Notes in Computer

Science, vol. 4876, pp. 36–55. Springer-Verlag (2007). Available from http://eprint.

iacr.org/2007/021

176. McDonald, C., Charnes, C., Pieprzyk, J.: An algebraic analysis of Trivium ciphers based

on the boolean satisfiability problem. Cryptology ePrint Archive, Report 2007/129 (2007).

Available at http://eprint.iacr.org/2007/129, and presented at the Interna-

tional Conference on Boolean Functions: Cryptography and Applications (BFCA’2008)
177. Mironov, I., Zhang, L.: Applications of SAT solvers to cryptanalysis of hash functions. In:

A. Biere, C.P. Gomes (eds.) Proc. Theory and Applications of Satisfiability Testing (SAT’06),

Lecture Notes in Computer Science, vol. 4121, pp. 102–115. Springer-Verlag (2006). Also

available as IACR E-print 2006/254
178. Montgomery, P.L.: A Block Lanczos algorithm for finding dependencies over GF(2). In:

L.C. Guillou, J.J. Quisquater (eds.) Advances in Cryptology—Proc. of EUROCRYPT, Lec-

ture Notes in Computer Science, vol. 921, pp. 106–120. Springer-Verlag (1995)
179. Moore, E.: On the reciprocal of the general algebraic matrix. Bulletin of the American

Mathematical Society 26 (1920)
180. Morgenstern, J.: How to compute fast a function and all its derivatives: a variation on the

theorem of Baur-Strassen. SIGACT News 16(4), 60–62 (1985). DOI http://doi.acm.org/10.

1145/382242.382836
181. Morrison, M.A., Brillhart, J.: A method of factorization and the factorization of F7. Mathe-

matics of Computation 29, 183–205 (1975)
182. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an

efficient SAT Solver. In: Proc. of 28th Design Automation Conference (DAC’01), pp. 530–

535. ACM (2001)
183. Odlyzko, A.M.: Discrete logarithms in finite fields and their cryptographic significance. In:

N. Cot (ed.) Advances in Cryptology—Proc. of EUROCRYPT, Lecture Notes in Computer

Science, vol. 209, pp. 224–316. Springer-Verlag (1984)
184. Paar, C.: Remote keyless entry system for cars and buildings is hacked; rub security experts

discover major vulnerability; access from a distance of 300 feet without traces. Tech. rep.,

University of Bochum, Germany (2008)
185. Pan, V.: How to Multiply Matrices Faster. No. 179 in Lecture Notes in Computer Science.

Springer-Verlag (1984)

348 References

186. Papadimitriou, C.H.: On selecting a satisfying truth assignment. In: Proceedings of the Con-

ference on the Foundations of Computer Science (FOCS’91), pp. 163–169. IEEE (1991)
187. Patarin, J.: Hidden Field Equations (HFE) and Isomorphisms of Polynomials (IP): two new

families of asymmetric algorithms. In: N. Koblitz (ed.) Advances in Cryptology—Proc. of

EUROCRYPT, Lecture Notes in Computer Science, vol. 1070, pp. 33–48. Springer-Verlag

(1996)
188. Paturi, R., Pudlák, P., Saks, M.E., Zane, F.: An improved exponential-time algorithm for

k-SAT. The Journal of the Association of Computing Machinery 52(3), 337–364 (2005)
189. Penrose, R.: A generalized inverse for matrices. Proc. of the Cambridge Phil. Soc. 51 (1955)
190. Pernet, C.: Implementation of Winograds algorithm over finite fields using ATLAS Level 3

BLAS. Tech. rep., ID-Laboratory (2001)
191. Pilz, E.: Boolsche gleichungssysteme, SAT Solver und stromchiffren. Master’s thesis, Uni-

versität Ulm, Institut für Theoretische Informatik (2008)
192. Pomerance, C.: A tale of two sieves. Notices of the American Mathematical Society 43(12),

1473–1485 (1996)
193. Pomerance, C., Smith, J.W.: Reduction of huge, sparse matrices over finite fields via created

catastrophes. Experimental Mathematics 1(2), 89–94 (1992)
194. Preneel, B., Biryukov, A., Cannière, C.D., Ors, S.B., Oswald, E., van Rompay, B.,

Granboulan, L., Dottax, E., Martinet, G., Murphy, S., Dent, A., Shipsey, R., Swart, C.,

White, J., Dichtl, M., Pyka, S., Schafheutle, M., Serf, P., Biham, E., Barkan, E., Braziler,

Y., Dunkelman, O., Furman, V., Kenigsberg, D., Stolin, J., Quisquater, J.J., Ciet, M., Sica,

F.: NESSIE: Final report of european project number IST-1999-12324, named new euro-

pean schemes for signatures, integrity, and encryption. Final Technical Report: Available at:

https://www.cosic.esat.kuleuven.be/nessie/Bookv015.pdf (2004)
195. Priemuth-Schmid, D., Biryukov, A.: Slid pairs in Salsa20 and Trivium. In: D.R. Chowd-

hury, V. Rijmen, A. Das (eds.) Progress in Cryptology—INDOCRYPT’08, Lecture Notes in

Computer Science, vol. 5365, pp. 1–14. Springer-Verlag (2008)
196. Raddum, H.: Cryptanalytic results on Trivium. eStream Report: 2006/039” (2006). Available

at www.ecrypt.eu.org/stream/papersdir/2006/039.ps
197. Raddum, H., Semaev, I.: Solving multiple right hand sides linear equations. Des. Codes

Cryptography 49(1-3), 147–160 (2008)
198. Raz, R., Shpilka, A.: Lower bounds for matrix product, in bounded depth circuits with arbi-

trary gates. In: STOC, pp. 409–418 (2001)
199. Raz, R., Shpilka, A.: Lower bounds for matrix product in bounded depth circuits with arbi-

trary gates. SIAM J. Comput. 32(2), 488–513 (2003)
200. Riedel, M.R.: Random permutation statistics. Paper available on the Internet (2006). http:

//www.geocities.com/markoriedelde/papers/randperms.pdf

201. Rijmen, V., Oswald, E.: Representations and Rijndael descriptions. In: H. Dobbertin, V. Ri-

jmen, A. Sowa (eds.) 4th International Conference on the Advanced Encryption Standard

(AES’04), Lecture Notes in Computer Science, vol. 3373, pp. 148–158. Springer-Verlag

(2004)
202. Ryser, H.J.: Combinatorial properties of matrices of zeros and ones. Canadian Journal of

Mathematics 9, 371–377 (1957)
203. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing Company (1996)
204. Santoro, N.: Extending the Four-Russians bound to general matrix multiplication. Informa-

tion Processing Letters (1979)
205. Santoro, N., Urrutia, J.: An improved algorithm for boolean matrix multiplication. Comput-

ing 36 (1986)
206. Schönhage, A.: Partial and total matrix multiplication. Journal of Computing 10(3) (1981)
207. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing. In: D.S.

Johnson, M.A. Trick (eds.) Cliques, Coloring, and Satisfiability: Second DIMACS Imple-

mentation Challenge (DIMACS’93), vol. 26. AMS (1996)
208. Selman, B., Levesque, H.J., Mitchell, D.G.: A new method for solving hard satisfiability

problems. In: 10th National Conference on Artificial Intelligence (AAAI’92), pp. 440–446

(1992)

References 349

209. Semaev, I.: On solving sparse algebraic equations over finite fields II. Cryptology ePrint

Archive, Report 2007/280 (2007). Available at http://eprint.iacr.org/2007/

280, and presented at the Eleventh International Workshop on Algebraic and Combinatorial

Coding Theory (ACCT’2008)

210. Semaev, I.: On solving sparse algebraic equations over finite fields. Designs Codes and

Cryptography 49(1-3), 47–60 (2008)

211. Stamp, M., Low, R.M.: Applied Cryptanalysis: Breaking Ciphers in the Real World. Wiley-

IEEE Press (2007)

212. Strassen, V.: Gaussian Elimination is not optimal. Numerische Mathematik 13(3) (1969)

213. Strassen, V.: Relative bilinear complexity and matrix multiplication. J. Reine Angew. Math.

375–376 (1987). This article is so long that it is split among two volumes.

214. Swenson, C.: Modern Cryptanalysis: Techniques for Advanced Code Breaking. Wiley (2008)

215. Tang, X., Feng, Y.: A new efficient algorithm for solving systems of multivariate polynomial

equations. Cryptology ePrint Archive, Report 2005/312 (2005). Available at http://

eprint.iacr.org/2005/312

216. Trappe, W., Washington, L.C.: Introduction to Cryptography with Coding Theory, second

edn. Pearson Prentice-Hall (2006)

217. Trefethen, L., III, D.B.: Numerical Linear Algebra. Society for Industrial and Applied Math-

ematics (1997)

218. Vielhaber, M.: Breaking One.Fivium by AIDA an algebraic IV differential attack. Cryptol-

ogy ePrint Archive, Report 2007/413 (2007). Available at http://eprint.iacr.org/

2007/413

219. Villard, G.: Further analysis of Coppersmith’s Block Wiedemann algorithm using matrix

polynomials. In: Proceedings of the 1997 international symposium on Symbolic and alge-

braic computation (ISSAC’97), pp. 32–39 (1997)

220. Warner, M., Benson, R.L.: Venona and beyond: Thoughts on work undone. Intelligence and

National Security 12(3), 1–13 (1997)

221. Warren, H.S.: Hacker’s Delight. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA (2002)

222. Watkins, D.: Fundamentals of Matrix Computations, second edn. Wiley (2002)

223. Weisstein, E.W.: Apéry’s constant. From MathWorld—A Wolfram Web Resource. Available

at http://mathworld.wolfram.com/AperysConstant.html

224. Weisstein, E.W.: Apollonius problem. From MathWorld—A Wolfram Web Resource. Avail-

able at http://mathworld.wolfram.com/PrimeNumberTheorem.html

225. Weisstein, E.W.: Berlekamp-Massey algorithm. From MathWorld—A Wolfram Web Re-

source. Available at http://mathworld.wolfram.com/PrimeNumberTheorem.

html

226. Weisstein, E.W.: Prime number theorem. From MathWorld—A Wolfram Web Resource.

Available at http://mathworld.wolfram.com/PrimeNumberTheorem.html

227. Weisstein, E.W.: Relatively prime. From MathWorld—A Wolfram Web Resource. Available

at http://mathworld.wolfram.com/RelativelyPrime.html

228. Weisstein, E.W.: Sylvester matrix. From MathWorld—A Wolfram Web Resource. Available

at http://mathworld.wolfram.com/SylvesterMatrix.html

229. Whaley, R.C., Petitet, A., Dongarra, J.: Automated empirical optimization of software and

the ATLAS Project. Parallel Computing 27(1–2), 3–35 (2001)

230. Wiedemann, D.H.: Solving sparse linear equations over finite fields. IEEE Transactions on

Information Theory 32(1), 54–62 (1986)

231. Wong, K., Bard, G., Lewis, R.: Partitioning multivariate polynomial equations via vertex cuts

for algebraic cryptanalysis and other applications. Submitted to a journal (2008). Available

at http://www.math.umd.edu/˜bardg/wong_bard_lewis.pdf

232. Yang, B.Y., Chen, O.C.H., Bernstein, D.J., Chen, J.M.: Analysis of QUAD. In: A. Biryukov

(ed.) Proc. of Fast Software Encryption (FSE’07), Lecture Notes in Computer Science, vol.

4593, pp. 290–308. Springer-Verlag (2007)

350 References

233. Zeitlhofer, T., Wess, B.: List-coloring of interval graphs with application to register as-

signment for heterogeneous register-set architectures. Signal Processing 83(7), 1411–1425

(2003)

234. Zetter, K.: Researchers crack Keeloq code for car keys. Wired Magazine (2007)

Index

GLn(GF(2)), 84

Mn(GF(2)), 84

O(n), 92

Ω(n), 92

Θ(n), 92

β , 238, 280

log2 7, 101

GF(16), 293

6=, 315

ω , 108

ω(n), 92

φ(n), 160

σ , 48

∼, 92

τ , 46, 50

ζ (2), 183

ζ (3), 183

o(n), 92

2-CNF-SAT, 251, 265

3-CNF SAT, 200

3-CNF-SAT, 251, 264

4-CNF-SAT, 251

5-CNF-SAT, 251

6-CNF-SAT, 251

accidental cancellations, 323

active plaintexts, 304

adjoint, 292

adjugate, 292

AES, 57, 279, 293, 302

agreeing, 239

algebraic cryptanalysis, 10, 247

algebraic normal form, 264, 286

analytic combinatorics, 21, 29

ANF, 286

anonymity, 306

Apéry’s constant, 48

Apollonius Problem, 237

Apéry’s constant, 183

AS 5/1, 56

AS 5/2, 56

ATLAS, 90

average-case, 209

back-solve, 98

back-solving, 99

back-substitution, 93, 99

basis

low weight, 225

basis weight reduction, 224

Baur-Strassen Theorem, 120, 121

Berlekamp-Massey Algorithm, 243

Bezout-Caley Matrix, 236

bi-cycle, 37

big-Oh, 107

bipartite, 239

Bivium, 55, 61, 63

Bivium-A, 65

Bivium-A Diagram, 62

Bivium-B Diagram, 62

BLAS, 90

block cipher, 9, 301

induced, 305

with small blocks, 303

Block Lanczos, 327

Block Wiedemann Algorithm, 72, 175, 245,

326

boolean matrix, 82, 107

brute force, 23, 61, 301

Buchberger Algorithm, 210, 228, 234, 279,

280

bulk GF(2) operations, 149

Bunch and Hopcroft’s LUP, 103

351

352 Index

cache, 89

Chaff, 263

Chinese Remainder Theorem, 161

chosen-plaintext attack, 26, 302, 303

ciphertext, 26

classical adjoint, 292

clear channel, 317

CNF, 264

CNF SAT, 200

code-book, 23, 25, 26, 301, 302, 304

codeword, 299

cofactor, 120

column-major

dense, 94

sparse, 325

column-swap array, 94

combinatorial class

labelled product, 36

maximal element, 30

product, 31

sequence, 33

sum, 31

combinatorics

analytic, 29

comparisons, 92

complex conjugate, 83

complier optimization, 92

computationally indistinguishable, 67

concrete security, 304

conjunction, 248

conjunctive normal form, 248, 264

connected components, 231

constraint satisfaction problem, 10, 24

continued fraction, 293

continuous, 243

cosh, 34

CPA, 26

created catastrophes algorithm, 327

cross over, 90

cross-over, 108

CSP, 10, 24

CTC, 279

cube-free, 183

cubic equations, 258

cutting number, 250, 251, 257

table, 251

cycle count, 39, 46

cycle length, 49

cycle structure theorem

strong, 40

weak, 40

cycles, 21

Data Encryption Standard, 12

data structure

array with swaps, 94

column-major, 94, 325

ragged array, 94

row-major, 94, 324

scratch, 91

dead give-aways, 281, 283, 298

degree dropper, 14, 198, 287

DeMorgan’s Law, 275

depth first search, 230

derangement, 44

DES, 12, 57, 247, 258, 260, 302

determinant, 93, 107, 115, 118, 292

partial derivative, 119

digraph, 82

diophantine, 187

disjunction, 248

disjunctive normal form, 264

distinguishing attack, 50

division

by zero, 131

division ring, 109

Dixon’s Resultant Method, 236

DNF, 264

double exponential, 210

dual cipher, 25

dummy variable, 250

ECRYPT, 57

Elimination Theory, 236

ElimLin, 219, 221, 222

Enigma, 60

equicomplexity, 118

Eratosthenes, 167, 180

eSTREAM, 57

eta, 20

Euclidean Algorithm, 161

exhaustive search, 301

existential quantifier, 263

expected value, 41

experiments, 24

extension field, 279

matrix representation, 283

review, 295

F4, 205, 279

F5, 205, 279

factor base, 176, 181, 182

factoring, 121

difficulty, 165

list of methods, 183

trial division, 163

fair coin assumption, 97, 134

Fermat’s Little Theorem, 288, 315

Index 353

Fermat, Pierre de, 170, 183

Fibonacci Series, 36

field equations, 290, 294

field operations, 91

fill-in, 178, 325, 327

filter function, 56

finger, 273

finite field, 81

large, 291

linear systems, 323

Fix-XL, 76

fixed points, 18, 25, 29, 30, 50

fixing bits, 15

floating point operations, 89

four Russians, 134

FPGA, 307

frontal assault, 16

Fulkerson-Gross Algorithm, 319, 320

Gödel, 174

Gödel Numbering, 171

Gödel Vector, 171, 176

benefits, 172

gate count, 245, 247

Gaussian Elimination, 109, 175, 177

back-substitution, 93

dense, 96–98

full pivoting, 91, 97, 103, 325

Naı̈ve Sparse, 224, 325

partial pivoting, 91, 104, 325

Semi-Naı̈ve Sparse, 326

structured, 327

gcd, 49, 161, 166, 168, 173, 237

generating functions

exponential, 29, 30

operations, 31

ordinary, 29, 30

Gibrat’s Distribution, 255

gluing, 240

GMP, 164

Gröbner Bases, 210, 234, 245, 279, 290, 291

Gram-Schmidt, 83

Gram-Schmidt Algorithm, 83

graph coloring, 188, 316

graph connectivity, 231, 234

Gray Code, 136, 137, 141

not GF(2), 152

greatest common divisor, 49, 237

greedy algorithm, 328

Greedy SAT, 266

GSAT, 266

GSM, 56

guess-and-determine, 4, 15, 75, 76, 206, 217,

242, 253, 269

guess-and-determine attack, 25, 206, 207

haystack functions, 189

Hessian, 131

HFE, 188

homotopy, 243

hyperbolic cosine, 34

hyperbolic sine, 34

I/O degree, 12

I/O relations, 12

Ibara, Moran, and Hui’s LUP, 103

infeasible attacks

measuring, 207

infinitesimal, 243

initialization phase, 60

initialization vector, 59

inner product, 83

interval graphs, 318, 319

inv0, 293

inversion, 93, 107

irreversibility, 61

iterated cipher, 49

iterated function, 17

Keeloq, 9, 10, 18, 29, 302–304, 306, 307

equations, 13

fixed point attack, 20

utilization, 25

Wagner attack, 26

key phase, 60

key recovery, 60, 302, 303

key schedule, 60

known-plaintext attack, 26, 303

KPA, 26

Kronrod’s Algorithm, 134

kurtosis, 256

labelled product, 36

Lagrange’s Theorem, 288

Lanczos’s Algorithm, 245, 327

Laplace, 118

Laplace’s formula, 118

left-or-right indistinguishability, 303

leptokurtic, 256

linear algebra

finite field, 81

linear combinations, 192

linear modular systems, 81

linear sieve, 159, 166, 169, 176, 177

matrix sizes, 176

linear system

number of solutions, 86

Linearization, 211

354 Index

lock-and-key drug design, 237

LOG Space, 249

log-normal distribution, 255

logical sentence, 263

logical-AND, 248, 264

logical-OR, 248, 264

logical-XOR, 249, 264

low-weight basis, 225

LQUP, 103

LU-factorization, 107

LUP-factorization, 93, 103, 111, 115, 117

M4RI, 133, 141, 142, 177

and Strassen, 152

not GF(2), 152

M4RM, 133, 137

and SAGE, 139

and Strassen, 151

not GF(2), 152

transpose, 138, 151

Magma, 3, 10, 19, 89, 92, 133, 139, 140, 151,

152, 205, 210, 211, 246, 262, 279, 280,

289–291, 294

magma, 246

majority vote, 51

manufacturer sub-key, 304

Maple, 3, 22, 23, 27, 43, 54, 74, 89, 211, 284,

287, 311, 313

Markowitz’s Algorithm, 326

massage, 252, 258

Mathematica, 3, 89, 211

Matlab, 3, 89, 211

matrix

adjoint, 120

adjugate, 120

dense, 94

inversion

Strassen’s formula, 101

minor, 118

multiplication, see matrix multiplication

permutation, 94

traingular, 99

matrix addition, 96

matrix inversion, 110, 113, 115

triangular, 114, 117

matrix multiplication, 107, 110, 114, 115

exponent, 108

naı̈ve, 92, 96, 109

Schönhage, 108

Strassen’s Algorithm, 100, 107

Victor Pan’s Algorithm, 108

matrix representation, 279, 283

matrix squaring, 110

MC, 199

MCD, 199

Menger’s Theorem, 232

Method of Four Russians, 107

inversion, 142

multiplication, 137

Midway Island, 304

minimal polynomial, 282

MiniSAT, xiii, 16, 246, 254, 255, 263–265,

269, 277

and luck, 254

molecular chemistry, 237

monomial counting, 47, 73, 280

monomials

equivalent, 47

Moore-Penrose Pseudoinverse, 102

Morgenstern, 120

morse code, 36

MP, 199

MPD, 199

MQ, 66, 68, 199, 201, 246

MQD, 68, 199

multiplicative inverse, 295

naı̈ve sieve, 170

needle functions, 189

negligible, 51, 68

NESSIE, 57

NLF, 11

non-linear function, 10

non-negligible, 51, 68

non-permutative, 117

North East Corner, the, 110

NP-Complete, 66, 69, 199, 246, 263, 290, 321

NP-hard, 69, 318

null space, 72, 85, 87, 324

finding, 87

review, 174

nullity, 87, 143, 144

of a random matrix, 145

number field sieve, 333

numerical experiments, 20

OGF, 29

omega, 108

oracle, 18

orthogonal basis, 83

over-definition, 248

overdefinition, 203, 206

Para-Inverse, 293

permutation

composition, 95

inversion, 95

permutations, 29

Index 355

asymptotic properties, 38

bi-cycle, 37

compose, 95

cycle count, 39

cycle counts, 46

cycles, 35

derangement, 44

iterated, 45

random, 23, 38

uni-cycle, 37

pivotless columns, 226

plaintext, 26

plaintext-ciphertext pairs, 26, 247, 303

platykurtic, 256

point of order, 21

point of order 2, 17

polynomial ring, 295

polynomial system

keeloq, 13

polynomial systems

degree reduction, 192

fragmentation, 228

hypersparse, 203

separable, 229

why solve, 187

polynomial-exponential divide, 205

polynomially many, 52

polynomials

equivalent, 191

identical, 191

Lagrange, 189

zero-like, 191

Pomerance-Smith Algorithm, 327

positive symmetric definite, 102

power series

formal, 30

pre-image, 68

predicate calculus, 200, 263

Preprocessing

of SAT, 252

product formula, 284

PSD, 102

pseudoinverse, 102

pseudorandom generator, 68

public key, 160

Purple cipher, 304

QR-factorization, 84, 107

QUAD, 55, 56, 66, 78, 188, 279

quadratic form, 243

quadratic residue, 180, 181

quadratic sieve, 159, 166, 169, 182, 328, 333

matrix sizes, 176

running time, 181

quaternions, 109

Raddum-Semaev Method, 64, 238, 245

radio channel assignment, 188, 317

ragged array, 94

random function, 68, 85

random matrix, 84, 143, 144

probability singular, 84, 85

random number generation, 306

random numbers, 59

random permutations, 23

random-plaintext attack, 26

rank, 87

of a random matrix, 145

rapid subspace enumeration, 135

rational function, 120

REF, 326

register allocation, 188, 318

regular representation, 297

rekey, 59

resultants, 234

rewinding a cipher, 61

Rijndael, 293

Robert Recorde, xv, 337

round, 13

row-major

dense, 94

sparse, 324

row-swap array, 94

RPA, 26

RREF, 85, 145, 326

RSA, 121, 159, 160, 163, 169

how to break, 161, 163

SAGE, xi, xii, xiv, xxxiii, 3, 89, 133, 139, 140,

151, 154, 211, 224, 280, 291, 334

SAT

CNF, 200

learned clauses, 275

worse case, 251

SAT problem, 246

SAT-solver, 64, 69, 228, 263, 281, 290, 291

scheduling, 318

Schur complement, 101, 102, 115, 116

search tree, 271

secret key, 59

self-orthogonal vector, 82–84

semigroup, 82

semiring, 32, 82

implementing with Z, 82

serial numbers, 305

SFLASH, 188

shift register, 12

shuffling, 306

356 Index

Sieve of Eratosthenes, 167, 168

sigma, 48

Singular, 10, 16, 19, 210, 211, 246, 262, 279,

280, 289–292, 294

singular, 246

sinh, 34

skew fields, 109

SMIF, 101

smooth numbers, 164

finding, 168, 180

sparse matrices, 159, 323

sparsity, 205, 238, 245, 280

splitting, 242

spurious solutions, 212

square-free, 164, 183

state recovery, 60

state update function, 56

state-transition function, 81

steal cars, 307

Strassen’s Algorithm, 107, 135

Matrix Multiplication, 100, 101

Strassen’s Formula

for Matrix Inversion, 101

stream cipher, 55

structured equations, 64

subspace, 88

super-encipherment, 30

Sylvester Matrix, 235

system of equations

content, 246

cubic, 258

quadratic, 68

underdefined, 290

tau, 46, 50

tensor, 107

transitive closure, 82

triangulated, 99

Trivium, 55, 58

Trivium Diagram, 57, 59

TTM, 279

underdefined, 290

undirected graph, 238

uni-cycle, 37

unit propagation, 273

Universal Map, 188

universal mapping theorem, 190

universal quantifier, 263

Variables vs Parameters, 236

Venn Diagram, 241

Venona Code, 59

vertex cut

balanced, 233

large, 232

polynomial systems, 229

vertex removal, 231

Walk-SAT, 270

watched literals, 273

weight

of a vector, 325

reduction, 225

Wiedemann’s Algorithm, 72, 245, 326

XL, 72, 74, 214, 245

XL-II, 72, 74

Zariski topology, 85

zero divisors, 192

zeta function, 48

Zhuang-Zi algorithm, 243

	EAE lgebraic Cryptanalysis
	Preface
	Why this Book was Written
	Advice for Graduate Students

	Dedication
	Acknowledgements
	If you Find Any Errors. . .

	Contents
	List of Tables
	List of Figures
	List of Algorithms
	List of Abrreviations

	Introduction: How to Use this Book
	Part One
	Part Two
	Part Three
	Appendices
	Suggested Chapter Ordering
	Theorem Numbering

	The Block Cipher Keeloq and Algebraic Attacks
	Notational Convention
	2.1 What is Algebraic Cryptanalysis?
	2.1.1 The CSP Model

	2.2 The Keeloq Specification
	2.3 Modeling the Non-linear Function
	2.3.1 I/O Relations and the NLF

	2.4 Describing the Shift-Registers
	2.4.1 Disposing of the Secret Key Shift-Register
	2.4.2 Disposing of the Plaintext Shift-Register
	Change of Indexing

	2.5 The Polynomial System of Equations
	2.6 Variable and Equation Count
	2.7 Dropping the Degree to Quadratic
	2.8 Fixing or Guessing Bits in Advance
	2.9 The Failure of a Frontal Assault

	The Fixed-Point Attack
	3.1 Overview
	3.1.1 Notational Conventions
	3.1.2 The Two-Function Representation
	3.1.3 Acquiring an f (8)k -oracle

	3.2 The Consequences of Fixed Points
	3.3 How to Find Fixed Points
	3.4 How far must we search?
	3.4.1 With Analytic Combinatorics
	3.4.2 Without Analytic Combinatorics

	3.5 Comparison to Brute Force
	3.6 Summary
	3.7 Other Notes
	3.7.1 A Note about Keeloq’s Utilization
	3.7.2 RPA vs KPA vs CPA

	3.8 Wagner’s Attack
	3.8.1 Later Work on Keeloq

	Iterated Permutations
	4.1 Applications to Cryptography
	4.2 Background
	4.2.1 Combinatorial Classes
	4.2.2 Ordinary and Exponential Generating Functions
	4.2.3 Operations on OGFs
	4.2.3.1 Simple Sum
	4.2.3.2 Cartesian Product
	4.2.3.3 Sum with Non-Empty Intersection
	4.2.3.4 Semiring of Combinatorial Classes
	4.2.3.5 Sequences of Objects
	4.2.3.6 Other Operations

	4.2.4 Examples
	4.2.4.1 Permutations in General
	4.2.4.2 The Non-Negative Integers
	4.2.4.3 Partitions into Boxes
	4.2.4.4 Cycles
	4.2.4.5 Morse Code
	4.2.4.6 Zig-Zag Arrangement

	4.2.5 Operations on EGFs
	4.2.5.1 The Labelled Product
	4.2.5.2 Random Permutations
	4.2.5.3 Asymptotic Probabilities

	4.2.6 Notation and Definitions

	4.3 Strong and Weak Cycle Structure Theorems
	4.3.1 Expected Values

	4.4 Corollaries
	4.4.1 On Cycles in Iterated Permutations
	4.4.1.1 An Example

	4.4.2 Limited Cycle Counts
	4.4.3 Monomial Counting

	4.5 Of Pure Mathematical Interest
	4.5.1 The Sigma Divisor Function
	4.5.2 The Zeta Function and Ap´ery’s Constant
	4.5.3 Greatest Common Divisors and Cycle Length

	4.6 Highly Iterated Ciphers
	4.6.1 Distinguishing Iterated Ciphers
	4.6.1.1 Repeating the Attack
	4.6.1.2 A General Maxim:

	4.6.2 A Key Recovery Attack

	Stream Ciphers
	5.1 The Stream Ciphers Bivium and Trivium
	5.1.1 Background
	5.1.1.1 What is a Stream Cipher?
	5.1.1.2 What was eSTREAM?
	5.1.1.3 What is Trivium?
	5.1.1.4 Secret Key versus Initial State
	5.1.1.5 Initialization Stage in Trivium
	5.1.1.6 Two Types of Attack
	5.1.1.7 What is Bivium?

	5.1.2 Bivium as Equations
	5.1.2.1 Features of these Equations

	5.1.3 An Excellent Trick
	5.1.4 Bivium-A
	5.1.5 A Notational Issue
	5.1.6 For Further Reading

	5.2 The Stream Cipher QUAD
	5.2.1 How QUAD Works
	5.2.2 Proof of Security
	5.2.2.1 Computationally Indistinguishable
	5.2.2.2 The Objective
	5.2.2.3 The Underlying Hard Problem: A Pre-Image Finder
	5.2.2.4 Outline of a Proof
	5.2.2.5 Exploratory Example

	5.2.3 The Yang-Chen-Bernstein-Chen Attack against QUAD
	5.2.3.1 The Combination of Wiedemann and XL-II
	5.2.3.2 The Attack Itself

	5.2.4 Extending to GF(16)
	5.2.4.1 An Exercise
	5.2.4.2 The Solution: Direct Version
	5.2.4.3 Another look at Fix-XL

	5.2.5 For Further Reading

	5.3 Conclusions for QUAD

	Some Basic Facts about Linear Algebra overGF(2)
	6.1 Sources
	6.2 Boolean Matrices vs GF(2) Matrices
	6.2.1 Implementing with the Integers

	6.3 Why is GF(2) Different?
	6.3.1 There are Self-Orthogonal Vectors
	6.3.2 Something that Fails
	6.3.3 The Probability a Random Square Matrix Singular orInvertible

	6.4 Null Space from the RREF
	6.5 The Number of Solutions to a Linear System

	The Complexity of GF(2)-Matrix Operations
	7.1 The Cost Model
	7.1.1 A Word on Architecture and Cross-Over
	7.1.2 Is the Model Trivial?
	7.1.3 Counting Field Operations
	7.1.4 Success and Failure

	7.2 Notational Conventions
	7.3 To Invert or to Solve?
	7.4 Data Structure Choices
	7.4.1 Dense Form: An Array with Swaps
	7.4.2 Permutation Matrices

	7.5 Analysis of Classical Techniques with our Model
	7.5.1 Na¨ıve Matrix Multiplication
	7.5.2 Matrix Addition
	7.5.3 Dense Gaussian Elimination
	7.5.4 Back-Solving a Triangulated Linear System

	7.6 Strassen’s Algorithms
	7.6.1 Strassen’s Algorithm for Matrix Multiplication
	7.6.2 Misunderstanding Strassen’s Matrix Inversion Formula

	7.7 The Unsuitability of Strassen’s Algorithm for Inversion
	7.7.1 Strassen’s Approach to Matrix Inversion
	7.7.2 Bunch and Hopcroft’s Solution
	7.7.3 Ibara, Moran, and Hui’s Solution

	On the Exponent of Certain Matrix Operations
	8.1 Very Low Exponents
	8.2 The Equicomplexity Theorems
	8.2.1 Starting Point
	8.2.2 Proofs

	8.3 Determinants and Matrix Inverses
	8.3.1 Background
	8.3.2 The Baur-Strassen-Morgenstern Theorem
	8.3.2.1 The Computational Model
	8.3.2.2 Theorem and Proof
	Superfluous Operations:
	Useful Operations:
	Notation
	Case 1: Sum of Two Distinct Variables
	Case 2: Sum of a Variable with Itself
	Case 3: Sum of a Variable and a Constant
	Case 4: Sum of a Constant and a Variable
	Case 5: Difference of Two Distinct Variables
	Case 6: Deducting a Constant from a Variable
	Case 7: Deducting a Variable from a Constant
	Case 8: Product of Two Distinct Variables
	Case 9: Product of a Variable with Itself
	Case 10: Product of a Constant and a Variable
	Case 11: Product of a Variable and a Constant
	Case 12: Quotient of Two Distinct Variables
	Case 13: A Constant Divided by a Variable
	Case 14: A Variable Divided by a Constant
	The Base Case
	Considering s and h also

	8.3.2.3 A Running Example
	8.3.2.4 Dividing by Zero
	8.3.2.5 Impossibility of the Hessian

	8.3.3 Consequences for the Determinant and Inverse

	The Method of Four Russians
	9.0.4 The Fair Coin Assumption
	9.1 Origins and PreviousWork
	9.1.1 Strassen’s Algorithm

	9.2 Rapid Subspace Enumeration
	9.3 The Four Russians Matrix Multiplication Algorithm
	9.3.1 Role of the Gray Code
	9.3.2 Transposing the Matrix Product
	9.3.3 Improvements
	9.3.4 A Quick Computation
	9.3.5 M4RM Experiments Performed by SAGE Staff
	9.3.6 Multiple Gray-Code Tables and Cache Management

	9.4 The Four Russians Matrix Inversion Algorithm
	9.4.1 Stage 1:
	9.4.2 Stage 2:
	9.4.3 Stage 3:
	9.4.4 A Curious Note on Stage 1 of M4RI
	9.4.5 Triangulation or Inversion?

	9.5 Exact Analysis of Complexity
	9.5.1 An Alternative Computation
	9.5.2 Full Elimination, not Triangular
	9.5.3 The Rank of 3k Rows, or Why k+e is not Enough
	9.5.4 Using Bulk Logical Operations

	9.6 Experimental and Numerical Results
	9.7 M4RI Experiments Performed by SAGE Staff
	9.7.1 Determination of k
	9.7.2 The Transpose Experiment

	9.8 PairingWith Strassen’s Algorithm for Matrix Multiplication
	9.8.1 Pairing M4RI with Strassen

	9.9 Higher Values of q
	9.9.1 Building the Gray Code over GF(q)
	9.9.2 Other Modifications
	9.9.3 Running Time
	9.9.4 Implementation

	The Quadratic Sieve
	10.1 Motivation
	10.1.1 A View of RSA from 60,000 feet
	10.1.2 Two Facts from Number Theory
	10.1.3 Reconstructing the Private Key from the Public Key

	10.2 Trial Division
	10.2.1 Other Ideas
	10.2.1.1 Classification by Difficulty
	10.2.1.2 Easy Factorization
	10.2.1.3 Testing Divisibility with GCDs

	10.2.2 Sieve of Eratosthenes
	10.2.2.1 Smooth Version
	An Interesting Trick

	10.3 Theoretical Foundations
	10.4 The Naıve Sieve
	10.4.1 An Extended Example

	10.5 The Gödel Vectors
	10.5.1 Benefits of the Notation
	10.5.2 Unlimited-Dimension Vectors
	10.5.3 The Master Stratagem
	10.5.4 Historical Interlude
	10.5.5 Review of Null Spaces
	10.5.6 Constructing a Vector in the Even-Space

	10.6 The Linear Sieve Algorithm
	10.6.1 Matrix Dimensions in the Linear & Quadratic Sieve
	10.6.2 The Running Time

	10.7 The Example, Revisited
	10.8 Rapidly Generating Smooth Squares
	Quadratic Residues
	10.8.1 New Strategy

	10.9 Further Reading
	10.10 Historical Notes

	Strategies for Polynomial Systems
	11.1 Why Solve Polynomial Systems of Equations over FiniteFields?
	11.2 Universal Maps
	11.3 Polynomials over GF(2)
	11.3.1 Exponents: x2 = x
	11.3.2 Equivalent versus Identical Polynomials
	11.3.3 Coefficients
	11.3.4 Linear Combinations

	11.4 Degree Reduction Techniques
	11.4.1 An Easy but Hard-to-State Condition
	11.4.2 An Algorithm that meets this Condition
	11.4.3 Interpretation
	11.4.4 Summary
	11.4.5 Detour: Asymptotics of the “Choose” Function
	11.4.6 Complexity Calculation
	11.4.7 Efficiency Note
	11.4.8 The Greedy Degree-Dropper Algorithm
	11.4.9 Counter-Example for Linear Systems

	11.5 NP-Completeness of MP
	One Last Interesting Thought

	11.6 Measures of Difficulty in MQ
	11.6.1 The Role of Over-Definition
	11.6.2 Ultra-Sparse Quadratic Systems
	An Interesting Observation

	11.6.3 Other Views of Sparsity
	Connection To Linear Sparsity
	Memory Usage
	SAT Solvers

	11.6.4 Structure

	11.7 The Role of Guessing a Few Variables
	11.7.1 Measuring Infeasible Running Times
	11.7.2 Fix-XL

	Algorithms for Solving Polynomial Systems
	12.1 A Philosophical Point on Complexity Theory
	12.2 Gröbner Bases Algorithms
	12.2.1 Double-Exponential Running Time
	12.2.2 Remarks about Gröbner Bases

	12.3 Linearization
	12.4 The XL Algorithm
	12.4.1 Complexity Analysis
	12.4.2 Sufficiently Many Equations
	12.4.3 Jumping Two Degrees
	12.4.4 Fix-XL

	12.5 ElimLin
	12.5.1 Why is this useful?
	12.5.2 How to use ElimLin
	12.5.3 On the Sub-Space of Linear Equations in the Span of aQuadratic System of Equations
	12.5.4 The Weight of the Basis
	12.5.5 One Last Trick for GF(2)-only
	12.5.6 Notes on the Sufficient Rank Condition
	Amplification
	A View from the Point-of-View of Randomness

	12.6 Comparisons between XL and F4
	12.7 SAT-Solvers
	12.8 System Fragmentation
	12.8.1 Separability
	12.8.2 Gaussian Elimination is Not Enough
	12.8.3 Depth First Search
	12.8.4 Nearly Separable Systems
	12.8.5 Removing Multiple vertices
	12.8.6 Relation to Menger’s Theorem
	12.8.7 Balance in Vertex Cuts
	12.8.7.1 Infinite Fields and Large Finite Fields

	12.8.8 Applicability

	12.9 Resultants
	12.9.1 The Univariate Case
	12.9.2 The Bivariate Case
	12.9.3 Multivariate Case
	12.9.3.1 Variables versus Parameters
	12.9.3.2 Solving the System

	12.9.4 Further Reading

	12.10 The Raddum-Semaev Method
	12.10.1 Building the Graph
	12.10.2 Agreeing
	12.10.3 Propigation
	12.10.4 Termination
	12.10.5 Gluing
	12.10.6 Splitting
	12.10.7 Summary

	12.11 The Zhuang-Zi Algorithm
	12.12 Homotopy Approach
	Applicability

	Converting MQ to CNF-SAT
	13.1 Summary
	13.2 Introduction
	13.2.1 Application to Cryptanalysis

	13.3 Notation and Definitions
	13.4 Converting MQ to SAT
	13.4.1 The Conversion
	13.4.1.1 Minor Technicality
	Step One: From a Polynomial System to a Linear System
	Step Two: From a Linear System to aConjunctive Normal Form Expression

	13.4.2 Measures of Difficulty
	13.4.2.1 Bounds on SAT

	13.4.3 Preprocessing
	The Reverse Massage

	13.4.4 Fixing Variables in Advance
	13.4.4.1 Parallelization of SAT

	13.4.5 SAT-Solver Used
	13.4.5.1 Note About Randomness
	Error in Dissertation

	13.5 Experimental Results
	13.5.1 The Source of the Equations
	13.5.2 Note About the Variance
	13.5.3 The Log-Normal Distribution of Running Times
	13.5.4 The Optimal Cutting Number

	13.6 Cubic Systems
	13.6.1 Do All Possible Monomials Appear?
	13.6.2 Measures of Efficiency

	13.7 Further Reading
	13.7.1 Previous Work
	13.7.2 Further Work

	13.8 Conclusions

	How do SAT-Solvers Operate?
	14.1 The Problem Itself
	14.1.1 Conjunctive Normal Form

	14.2 Solvers like Walk-SAT
	14.2.1 The Search Space
	14.2.2 Papadimitriou’s Algorithm
	14.2.3 Greedy SAT or G-SAT
	14.2.4 Walk-SAT
	14.2.5 Walk-SAT versus Papadimitriou
	14.2.6 Where Heuristic Methods Fail
	14.2.7 Closing Thoughts on Heuristic Methods

	14.3 Back-Tracking
	14.4 Chaff and its Descendants
	14.4.1 Variable Management
	14.4.2 Unit Propagation
	14.4.3 The Method of Watched Literals
	14.4.4 Absent Literals
	14.4.5 Summary

	14.5 Enhancements to Chaff
	14.5.1 Learned Clauses
	14.5.2 The Alarm Clock
	14.5.3 The Third Finger

	14.6 Economic Motivations
	14.7 Further Reading

	Applying SAT-Solvers to Extension Fields ofLow Degree
	15.1 Introduction
	15.2 Solving GF(2) Systems via SAT-Solvers
	15.2.1 Sparsity

	15.3 Overview
	15.4 Polynomial Systems over Extension Fields of GF(2)
	15.4.1 Extensions of the Coefficient Field
	15.4.2 Difficulty in Bits

	15.5 Finding Efficient Arithmetic Representations via Matrices
	15.6 Using the Algebraic Normal Forms
	15.6.1 Remarks on the Special Forms
	15.6.2 Remarks on Degree
	15.6.3 Remarks on Coefficients
	15.6.4 Solving with Gr¨obner Bases

	15.7 Experimental Results
	Special Symbols in Results Table:
	Underdefined Systems of Equations
	On the Efficacy of the Translation
	Larger Fields
	15.7.1 Computers Used
	15.7.2 Polynomial Systems Used

	15.8 Inverses and Determinants
	15.8.1 Determinants
	15.8.2 Inverses
	15.8.3 Rijndael and the Para-Inverse Operation

	15.9 Conclusions
	15.10 Review of Extension Fields
	15.10.1 Constructing the Field
	15.10.2 Regular Representation

	15.11 Reversing the Isomorphism: The Existence of DeadGive-Aways

	Appendix A
	On the Philosophy of Block CiphersWith SmallBlocks
	A.1 Definitions
	A.2 Brute-Force Generic Attacks on Ciphers with Small Blocks
	Point of View 1: Theoretical
	Point of View 2: Practical
	Summary

	A.3 Key Recovery vs. Applications of Ciphers with Small Blocks
	Scenario One: LORI-KPA/LORI-CPA
	Scenario Two: Manufacturer Sub-Keys
	Scenario Three: Short but Private Data
	Scenario Four: Assigning Account Numbers
	Scenario Five: Scratch Cards and Software Serial Numbers
	Scenario Six: Random Number Generation
	Scenario Seven: Fast Shuffling and Anonymity

	A.4 The Keeloq Code-book—Practical Considerations
	A.5 Conclusions

	Appendix B
	Formulas for the Field Multiplication law forLow-Degree Extensions of GF(2)
	B.1 For GF(4)
	B.2 For GF(8)
	B.3 For GF(16)
	B.4 For GF(32)
	B.5 For GF(64)

	Appendix C
	Polynomials and Graph Coloring, with OtherApplications
	C.1 A Very Useful Lemma
	C.2 Graph Coloring
	C.2.1 The c 6= pn Case
	C.2.2 Application to GF(2) Polynomials

	C.3 Related Applications
	C.3.1 Radio Channel Assignments
	C.3.2 Register Allocation

	C.4 Interval Graphs
	C.4.1 Scheduling an Interval Graph Scheduling Problem
	C.4.2 Comparison to Other Problems
	C.4.3 Moral of the Story

	Appendix D
	Options for Very Sparse Matrices
	D.1 Preliminary Points
	D.1.1 Accidental Cancellations
	D.1.2 Solving Equations by Finding a Null Space
	D.1.3 Data Structures and Storage
	D.1.3.1 An Interesting Variation

	D.2 Na¨ıve Sparse Gaussian Elimination
	D.2.1 Sparse Matrices can have Dense Inverses

	D.3 Markowitz’s Algorithm
	D.4 The BlockWiedemann Algorithm
	D.5 The Block Lanczos Algorithm
	D.6 The Pomerance-Smith Algorithm
	D.6.1 Overview
	D.6.1.1 Objective
	D.6.1.2 The Method

	D.6.2 Inactive and Active Columns
	D.6.3 The Operations
	D.6.4 The Actual Algorithm
	D.6.5 Fill-in and Memory Management
	D.6.6 Technicalities
	D.6.6.1 Why not Do Operation 0 only Once?
	D.6.6.2 Random Matrices
	D.6.6.3 Only Getting Part of the Null Space

	D.6.7 Cremona’s Implementation
	D.6.8 Further Reading

	Appendix E
	Inspirational Thoughts, Poetry and Philosophy

	References
	Index

